ОБЛАСТЬ АККРЕДИТАЦИИ

<u>Федеральное бюджетное учреждение «Государственный региональный центр стандартизации,</u> метрологии и испытаний в Тульской области» (ФБУ «Тульский ЦСМ»)

наименование юридического лица или фамилия, имя и отчество (в случае, если имеется) индивидуального предпринимателя

300028, г. Тула, ул. Болдина, д. 91

300013, г. Тула, ул. Волнянского, д. 1

390011, г. Рязань, ул. Старообрядческий проезд, д. 5 адреса мест осуществления деятельности

Калибровка средств измерений

РГП шифр калибровочного клейма

		Метрологиче	ские требования	Примечание ²
№ π/π ¹	Измерение, тип (груп- па) средств измерений	диапазон измерений	неопределенность ³ (погрешность, класс, разряд)	
1	2	3	4	5
		300028, г. Тула, ул. Бо	олдина, д. 91	
ИЗМІ	ЕРЕНИЯ ГЕОМЕТРИЧ	ЕСКИХ ВЕЛИЧИН		
1	Средства измерений д	лины. Меры длины к	онцевые	
1.1	Меры длины конце-	от 0,1 до 100 мм	$\mathrm{U}_{0.95} = 0{,}070 \ \mathrm{мкм}$	MK-05.57.20
	вые		KT 0	«Меры длины
	плоскопараллельные		KT 1;	концевые пло-
			KT 2;	скопараллельные
			KT 3;	(0,1100) mm
			KT 4;	(0,11000) мм.
			KT 5	Методика
			2 разряд	калибровки»
			3 разряд	
			4 разряд	

На 91 листе, Лист 1

				T
	***	от 0,1 до 1000 мм	U _{0.95} = 0,061 мкм КТ 1; КТ 2; КТ 3; КТ 4; КТ 5 3 разряд 4 разряд	
1.2	Щупы	от 0,02 до 1,00 мм	U _{0.95} = 0,47 мкм КТ 1 КТ 2	МК-05.152.19 «Щупы. Методика калибровки»
1.3	Наборы принадлежностей к мерам длины концевым (боковики радиусные и плоскопараллельные)	10х9х75 мм (плоскопараллельные) R 2; 5; 10; 15; 20 мм (радиусные)	$U_{0.95} = 0.24$ мкм ПГ ± 0.001 мм ПГ ± 0.002 мм	МК-05.76.19 «Наборы принадлежностей к мерам длины концевым (боковики радиусные и плоскопараллельные). Методика калибровки»
1.4	Кольца эталонные	от 0,5 до 300 мм от 0,5 до 200 мм	$U_{0.95}=0,12$ мкм $\Pi\Gamma\pm(26)$ мкм 4 разряд $U_{0.95}=0,12$ мкм $\Pi\Gamma\pm(0,57,0)$ мкм $\sigma\pm((0,2+2L)$ $(0,5+5L))$ мкм 3 разряд	МК-05.06.20 «Кольца эталонные 4 разряда. Методика калибровки» МК-05.171.20 «Кольца эталонные 3 разряда. Методика калибровки»
1.5	Кольца установочные	от 0,5 до 300 мм	U _{0.95} = 0,12 мкм КТ 3; КТ 4; КТ 5	МК-05.37.19 «Кольца Установочные. Методика калибровки»
1.6	Сужающие устрой- ства	ДИАМ от 4 до 700 мм	U $_{0.95}$ =1,6 мкм ПГ 0,04 %	МК-05.126.19 «Сужающие устройства. Методика калибровки»
1.7	Оправки цилиндриче- ские и конусные;	ДИАМ от 10 до 270 мм L = 500 мм	U $_{0.95} = 0.07$ мкм ПГ 0.001 мм	МК-05.175.20 «Оправки ци- линдрические и конусные.

	валики цилиндриче-	ДИАМ		Методика
	ские	от 5 до 60 мм		калибровки»
		L = 300 MM		MK-05.174.20
				«Валики цилин-
				дрические.
				Методика
				калибровки»
1.8	Меры наружного диа-	от 0,06 до 100 мм	$U_{0.95} = 0.24 \text{ MKM}$	MK-05.11.20
	метра (меры устано-	•	KT 0	«Меры с цилин-
	вочные, меры с цилин-		KT 1	дрическими из-
	дрическими измери-		KT 2	мерительными
	тельными поверхно-		$\Pi\Gamma$ (0,52,0) мкм	поверхностями.
	стями, штифты (вали-			Методика
	ки) измерительные)			калибровки»
	, 1			MK-05.161.19
				«Штифты кон-
				трольные (меры
				установочные).
				Методика
				калибровки»
1.9	Проволочки	ДИАМ	$U_{0.95} = 0,46 \text{ MKM}$	MK-05.108.19
	и ролики	от 0,101 до 4,980 мм	KT 0; KT 1	«Проволочки и
				ролики.
		ДИАМ	$U_{0.95} = 0,46 \text{ MKM}$	Методика
		от 5 до 35 мм	KT 0; KT 1	калибровки»
		ДИАМ	$U_{0.95} = 0,46 \text{ MKM}$	
		от 2,5 до 59 мм	$\Pi\Gamma$ 0,005 мм	
1.10	Калибры		$U_{0.95} = 0.12 \text{ MKM}$	MK-05.33.19
	- гладкие для валов и	от 1 до 500 мм	Квалитет (617)	«Калибры глад-
	отверстий			кие для валов и
	-скобы	от 0 до 200 мм	$\Pi\Gamma\pm0,1$ мм	отверстий, ско-
				бы.
				Методика
				калибровки»
1.11	П	. (0.010 - 2.000)	11 005	MIC 07 02 10
1.11	Приборы и установки	$\pm (0,0102,000)$ mm	$U_{0.95} = 0.07 \text{ MKM}$	MK-05.93.19
	для поверки концевых		$\Pi\Gamma \pm (0.00002$	«Приборы и
	мер и сортировки де-		0,006) мм	установки для
	талей на группы	. (0.002 2.000)	11 0.07	поверки кон-
		$\pm (0,0022,000)$ mm	$U_{0.95} = 0.07 \text{ MKM}$	цевых мер и
			$\Pi\Gamma\pm$ 0,2 %	сортировки
		om 0.1 vo 100 voz	II0.07	деталей на
		от 0,1 до 100 мм	$U_{0.95} = 0.07 \text{ MKM}$	группы.
			$\Pi\Gamma \pm (0,1+L)$ мкм	Методика
		± (0 2 500) sec	H 0.07	калибровки»
		$\pm (02,500)$ mm	$U_{0.95} = 0.07 \text{ MKM}$	
			$\Pi\Gamma \pm (0.00002 \ 0.0006)$ mm	
			0,0000) MM	
2	Спадетра измерений з		TNUVADI IA	1
2.1	Меры длины штрихо-	лины. меры длины ш от 0 до1000 мм	Триховые U _{0.95} = 4,6 мкм	MK-05.58.19
∠.1	ттеры длины штрихо-	от о дотооо мм	U 0.95 — 4,0 MKM	10111-03.30.19

				1
	вые		$\Pi\Gamma \pm (0,10,2)$ мм	«Меры длины
	(метры-компараторы)		4 разряд	штриховые
				(метры-
				компараторы).
				Методика
				калибровки»
2.2	Меры длины штрихо-	от 0 до 1000 мм	$U_{0.95} = 3.0 \text{ MKM}$	MK-05.59.19
	вые		KT 4	«Меры длины
	(тип II, IV)		$U_{0.95} = 29 \text{ MKM}$	штриховые
			KT 5	(тип II, IV).
				Методика
				калибровки»
2.3	Линейки измеритель-	от 0 до 1000 мм	$U_{0.95} = 29 \text{ MKM}$	MK-05.47.19
	ные металлические		$\Pi\Gamma\pm(0,100,20)$ мм	«Линейки
			. ,	измерительные
				металлические.
				Методика
				калибровки»
2.4	Ленты измерительные	от 0 до 50 м	$U_{0.95} = 0.023 \text{ mm}$	MK-05.03.18
	эталонные		$\Pi\Gamma \pm (1,0-5,0)$ mm	«Ленты измери-
			3 разряд	тельные 3 раз-
				ряда (рулетки).
				Методика
				калибровки»
2.5	Рулетки измеритель-	от 0 до 100 м	$U_{0.95} = 1,2 \text{ MKM}$	MK-05.113.20
	ные		KT 2	«Рулетки изме-
			KT 3	рительные.
				Методика
				калибровки»
2.6	Линейки охватываю-	Диаметр	$U_{0.95} = 1,2 \text{ MM}$	MK-05.48.19
	щие (циркометры)	от 20 до 2700 мм	$\Pi\Gamma \pm (0,73,0)$ мм	«Линейки
				охватывающие
		Длина окружности от	$U_{0.95} = 1,2 \text{ MM}$	(циркометры).
		60 до 8500 мм	$\Pi\Gamma \pm (0,73,0)$ мм	Методика
				калибровки»
2.7	Рейки нивелирные	от 0 до 5000 мм	$U_{0.95} = 1,2 \text{ MM}$	MK-05.111.19
			$\Pi\Gamma \pm (0,20,5)$ мм	«Рейки
				нивелирные.
				Методика
				калибровки»
2.8	Меры (метры) брус-	от 0 до 1000 мм	$U_{0.95} = 0,23 \text{ MKM}$	MK-05.56.19
	ковые деревянные и		$\Pi\Gamma$ \pm (11,5) мм	«Меры (метры)
	металлические			брусковые дере-
				вянные и метал-
				лические.
				Методика
				калибровки»
2.9	Метры складные ме-	от 0 до 1000 мм	$U_{0.95} = 29 \text{ MKM}$	MK-05.65.19
	таллические и дере-		$\Pi\Gamma$ ± (0,021,00) мм	«Метры склад-
	вянные			ные металличе-
				ские и деревян-
				ные.
				Методика

2.10 Метроштоки	МК-05.64.19 «Метроштоки. Методика калибровки» МК-05.98.19 «Приборы для поверки инди- каторов, голо- вок и нутроме- ров. Методика калибровки» МК-05.98.19 «Приборы для поверки инди- каторов, голо- вок и нутроме- ров. Методика калибровки» МК-05.151.19 «Штангенцир- кули. Методика
3.1 Приборы для поверки головок от 0 до 2 мм	Методика калибровки» МК-05.98.19 «Приборы для поверки индикаторов, головок и нутромеров. Методика калибровки» МК-05.98.19 «Приборы для поверки индикаторов, головок и нутромеров и нутромеров. Методика калибровки» МК-05.151.19 «Штангенциркули.
3.1 Приборы для поверки головок от 0 до 2 мм $U_{0.95} = 0.14 \text{ мкм}$ ПГ $\pm 0.00050 \text{ мм}$ ПП $\pm 0.0010 \text{ мм}$ 4 разряд 3.2 Приборы для поверки индикаторов от 0 до 50 мм $U_{0.95} = 0.23 \text{ мкм}$ ПГ $\pm (0.0015 0.003) \text{ мм}$ 4 разряд 3.3 Штангенциркули от 0 до 4000 мм $U_{0.95} = 0.46 \text{ мкм}$ ПГ $\pm (0.020,50)$ мм 3.4 Штангенглубиномеры от 0 до 1000 мм $U_{0.95} = 0.46 \text{ мкм}$ ПГ $\pm (0.030,15)$ мм	калибровки» МК-05.98.19 «Приборы для поверки индикаторов, головок и нутромеров. Методика калибровки» МК-05.98.19 «Приборы для поверки индикаторов, головок и нутромеров. Методика калибровки» МК-05.151.19 «Штангенциркули.
3.1 Приборы для поверки головок от 0 до 2 мм $U_{0.95} = 0.14 \text{ мкм}$ ПГ $\pm 0.00050 \text{ мм}$ ПП $\pm 0.0010 \text{ мм}$ 4 разряд 3.2 Приборы для поверки индикаторов от 0 до 50 мм $U_{0.95} = 0.23 \text{ мкм}$ ПГ $\pm (0.0015 0.003) \text{ мм}$ 4 разряд 3.3 Штангенциркули от 0 до 4000 мм $U_{0.95} = 0.46 \text{ мкм}$ ПГ $\pm (0.020,50)$ мм 3.4 Штангенглубиномеры от 0 до 1000 мм $U_{0.95} = 0.46 \text{ мкм}$ ПГ $\pm (0.030,15)$ мм	МК-05.98.19 «Приборы для поверки индикаторов, головок и нутромеров. Методика калибровки» МК-05.98.19 «Приборы для поверки индикаторов, головок и нутромеров. Методика калибровки» МК-05.151.19 «Штангенциркули.
3.1 Приборы для поверки головок от 0 до 2 мм $U_{0.95} = 0.14 \text{ мкм}$ ПГ $\pm 0.00050 \text{ мм}$ ПП $\pm 0.0010 \text{ мм}$ 4 разряд 3.2 Приборы для поверки индикаторов от 0 до 50 мм $U_{0.95} = 0.23 \text{ мкм}$ ПГ $\pm (0.0015 0.003) \text{ мм}$ 4 разряд 3.3 Штангенциркули от 0 до 4000 мм $U_{0.95} = 0.46 \text{ мкм}$ ПГ $\pm (0.020,50)$ мм 3.4 Штангенглубиномеры от 0 до 1000 мм $U_{0.95} = 0.46 \text{ мкм}$ ПГ $\pm (0.030,15)$ мм	«Приборы для поверки индикаторов, головок и нутромеров. Методика калибровки» МК-05.98.19 «Приборы для поверки индикаторов, головок и нутромеров. Методика калибровки» МК-05.151.19 «Штангенциркули.
3.1 Приборы для поверки головок от 0 до 2 мм $U_{0.95} = 0.14$ мкм ПГ ± 0.00050 мм ПП ± 0.0010 мм 4 разряд 3.2 Приборы для поверки индикаторов от 0 до 50 мм $U_{0.95} = 0.23$ мкм ПГ $\pm (0.00150003)$ мм 4 разряд 3.3 Штангенциркули от 0 до 4000 мм $U_{0.95} = 0.46$ мкм ПГ $\pm (0.020,50)$ мм 3.4 Штангенглубиномеры от 0 до 1000 мм $U_{0.95} = 0.46$ мкм ПГ $\pm (0.030,15)$ мм	«Приборы для поверки индикаторов, головок и нутромеров. Методика калибровки» МК-05.98.19 «Приборы для поверки индикаторов, головок и нутромеров. Методика калибровки» МК-05.151.19 «Штангенциркули.
$\Pi\Gamma\pm0,0010\ \mathrm{MM}\ 4\ \mathrm{разряд}$ 3.2 Приборы для поверки индикаторов $\Pi\Gamma\pm(0,0015\ 0,003)\ \mathrm{MM}\ 4\ \mathrm{разряд}$ $\Pi\Gamma\pm(0,0015\ 0,003)\ \mathrm{MM}\ 4\ \mathrm{разряд}$ 3.3 Штангенциркули $\Pi\Gamma\pm(0,0015\ 0,003)\ \mathrm{MM}\ 4\ \mathrm{разряд}$ $\Pi\Gamma\pm(0,0020,50)\ \mathrm{MM}$ $\Pi\Gamma\pm(0,020,50)\ \mathrm{MM}$ $\Pi\Gamma\pm(0,020,50)\ \mathrm{MM}$ $\Pi\Gamma\pm(0,030,15)\ \mathrm{MM}$	поверки индикаторов, головок и нутромеров. Методика калибровки» МК-05.98.19 «Приборы для поверки индикаторов, головок и нутромеров. Методика калибровки» МК-05.151.19 «Штангенциркули.
3.2 Приборы для поверки индикаторов	каторов, головок и нутромеров. Методика калибровки» МК-05.98.19 «Приборы для поверки индикаторов, головок и нутромеров. Методика калибровки» МК-05.151.19 «Штангенциркули.
3.2 Приборы для поверки индикаторов от 0 до 50 мм $\Pi\Gamma\pm(0,0015\ 0,003)$ мм $\Pi\Gamma\pm(0,0015\ 0,003)$ мм $\Pi\Gamma\pm(0,0015\ 0,003)$ мм $\Pi\Gamma\pm(0,003\ 0,003)$ мм	вок и нутромеров. Методика калибровки» МК-05.98.19 «Приборы для поверки индикаторов, головок и нутромеров. Методика калибровки» МК-05.151.19 «Штангенциркули.
$\Pi\Gamma\pm(0,0015\ 0,003)\ { m MM}\ 4\ { m pa3pяд}$ 3.3 Штангенциркули от 0 до 4000 мм $U_{0.95}=0,46\ { m MKM}\ \Pi\Gamma\pm(0,020,50)\ { m MM}$ 3.4 Штангенглубиномеры от 0 до 1000 мм $U_{0.95}=0,46\ { m MKM}\ \Pi\Gamma\pm(0,030,15)\ { m MM}$	ров. Методика калибровки» МК-05.98.19 «Приборы для поверки индикаторов, головок и нутромеров. Методика калибровки» МК-05.151.19 «Штангенциркули.
$\Pi\Gamma\pm(0,0015\ 0,003)\ { m MM}\ 4\ { m pa3pяд}$ 3.3 Штангенциркули от 0 до 4000 мм $U_{0.95}=0,46\ { m MKM}\ \Pi\Gamma\pm(0,020,50)\ { m MM}$ 3.4 Штангенглубиномеры от 0 до 1000 мм $U_{0.95}=0,46\ { m MKM}\ \Pi\Gamma\pm(0,030,15)\ { m MM}$	Методика калибровки» МК-05.98.19 «Приборы для поверки индикаторов, головок и нутромеров. Методика калибровки» МК-05.151.19 «Штангенциркули.
$\Pi\Gamma\pm(0,0015\ 0,003)\ { m MM}\ 4\ { m pa3pяд}$ 3.3 Штангенциркули от 0 до 4000 мм $U_{0.95}=0,46\ { m MKM}\ \Pi\Gamma\pm(0,020,50)\ { m MM}$ 3.4 Штангенглубиномеры от 0 до 1000 мм $U_{0.95}=0,46\ { m MKM}\ \Pi\Gamma\pm(0,030,15)\ { m MM}$	калибровки» МК-05.98.19 «Приборы для поверки индикаторов, головок и нутромеров. Методика калибровки» МК-05.151.19 «Штангенциркули.
$\Pi\Gamma\pm(0,0015\ 0,003)\ { m MM}\ 4\ { m pa3pяд}$ 3.3 Штангенциркули от 0 до 4000 мм $\Pi\Gamma\pm(0,020,50)\ { m MM}\ \Pi\Gamma\pm(0,020,50)\ { m MM}$ от 0 до 1000 мм $\Pi\Gamma\pm(0,030,15)\ { m MM}\ \Pi\Gamma\pm(0,030,15)\ { m MM}$	МК-05.98.19 «Приборы для поверки индикаторов, головок и нутромеров. Методика калибровки» МК-05.151.19 «Штангенциркули.
$\Pi\Gamma\pm(0,0015\ 0,003)\ { m MM}\ 4\ { m pa3pяд}$ 3.3 Штангенциркули от 0 до 4000 мм $\Pi\Gamma\pm(0,020,50)\ { m MM}\ \Pi\Gamma\pm(0,020,50)\ { m MM}$ от 0 до 1000 мм $\Pi\Gamma\pm(0,030,15)\ { m MM}\ \Pi\Gamma\pm(0,030,15)\ { m MM}$	«Приборы для поверки индикаторов, головок и нутромеров. Методика калибровки» МК-05.151.19 «Штангенциркули.
0,003) мм 4 разряд 0.003) мм 4 разряд 0.003 мм 0.003	поверки индикаторов, головок и нутромеров. Методика калибровки» МК-05.151.19 «Штангенциркули.
3.3 Штангенциркули от 0 до 4000 мм $U_{0.95} = 0,46$ мкм $\Pi\Gamma \pm (0,020,50)$ мм $U_{0.95} = 0,46$ мкм $\Pi\Gamma \pm (0,020,50)$ мм $U_{0.95} = 0,46$ мкм $\Pi\Gamma \pm (0,030,15)$ мм	каторов, головок и нутромеров. Методика калибровки» МК-05.151.19 «Штангенциркули.
3.3 Штангенциркули от 0 до 4000 мм $ U_{0.95} = 0,46 \text{ мкм} \\ \Pi\Gamma \pm (0,02 \dots 0,50) \text{ мм} $ 3.4 Штангенглубиномеры от 0 до 1000 мм $ U_{0.95} = 0,46 \text{ мкм} \\ \Pi\Gamma \pm (0,03 \dots 0,15) \text{ мм} $	вок и нутромеров. Методика калибровки» МК-05.151.19 «Штангенциркули.
$\Pi\Gamma\pm(0,02\dots0,50)$ мм $ U_{0.95}=0,46 \text{ мкм} $ $\Pi\Gamma\pm(0,03\dots0,15)$ мм	ров. Методика калибровки» МК-05.151.19 «Штангенцир- кули.
$\Pi\Gamma\pm(0,02\dots0,50)$ мм $ U_{0.95}=0,46 \text{ мкм} $ $\Pi\Gamma\pm(0,03\dots0,15)$ мм	Методика калибровки» МК-05.151.19 «Штангенциркули.
$\Pi\Gamma\pm(0,02\dots0,50)$ мм $ U_{0.95}=0,46 \text{ мкм} $ $\Pi\Gamma\pm(0,03\dots0,15)$ мм	калибровки» МК-05.151.19 «Штангенцир-кули.
$\Pi\Gamma\pm(0,02\dots0,50)$ мм $ U_{0.95}=0,46 \text{ мкм} $ $\Pi\Gamma\pm(0,03\dots0,15)$ мм	МК-05.151.19 «Штангенцир- кули.
$\Pi\Gamma\pm(0,02\dots0,50)$ мм $ U_{0.95}=0,46 \text{ мкм} $ $\Pi\Gamma\pm(0,03\dots0,15)$ мм	«Штангенцир- кули.
3.4 Штангенглубиномеры от 0 до 1000 мм $ U_{0.95} = 0,46 \text{ мкм} \\ \Pi\Gamma \pm (0,030,15) \text{ мм} $	кули.
$\Pi\Gamma \pm (0,030,15)$ mm	-
$\Pi\Gamma \pm (0,030,15)$ mm	Методика
$\Pi\Gamma \pm (0,030,15)$ мм	
$\Pi\Gamma \pm (0,030,15)$ mm	калибровки»
	MK-05.147.19
	«Штангенглу-
	биномеры.
	Методика
	калибровки»
3.5 Штангенрейсмасы от 0 до $2500 \mathrm{mm}$ U $_{0.95} = 0.46 \mathrm{mkm}$	MK-05.150.19
$\Pi\Gamma \pm (0.05 \dots 0.20) \text{ mm}$	«Штангенрей-
	смасы.
	Методика
	калибровки»
3.6 Штангензубомеры с Модуль U _{0.95} = 0,46 мкм	MK-05.148.19
нониусом от 1 до 40 мм $\Pi\Gamma \pm 0{,}02$ мм	«Штангензубо-
	меры с нониу-
	сом. Методика
27 111	калибровки»
3.7 Штангенинструмент от 0 до 4000 мм $U_{0.95} = 0.46$ мкм	MK-05.149.19
(штангены, штан- п $\Gamma \pm (0,020,50)$ мм	«Штангенин-
гентрубомеры)	струмент (штан-
	гены, штан-
	гентрубомеры). Методика
	MATOHIII
3.8 Микрометры от 0 до 3000 мм U _{0.95} = 0,46 мкм	калибровки»
Уликрометры от о до 3000 мм С 0,95 0,40 мкм КТ1;	калибровки»
KT1, KT2	

			$\Pi\Gamma \pm (1,558,0)$ мкм	Методика
			4 разряд	калибровки»
			1 1	MK-05.71.19
				«Микрометры
				зубомерные.
				Методика
				калибровки»
3.9	Микрометры рычаж-	от 0 до 1000 мм	$U_{0.95} = 0.23 \text{ MKM}$	MK-05.69.19
3.7	ные	01 0 до 1000 мм	$\Pi\Gamma \pm 0{,}001 \text{ mm}$	«Микрометры
	IIBIC		$\Pi\Gamma \pm 0,020$ мм	рычажные.
			111 ± 0,020 MM	Методика
				калибровки»
3.10	Микрометры со	от 0 до 350 мм	U _{0.95} =0,46 мкм	MK-05.70.19
3.10	вставками	01 0 до 330 мм	$\Pi\Gamma\pm 0{,}004~{ m mm}$	«Микрометры
	вставками		$\Pi\Gamma\pm0,004$ MM $\Pi\Gamma\pm0,008$ MM	со вставками.
			$111 \pm 0,008 \text{ MM}$	Методика
				калибровки»
				калиоровки»
3.11	Меры установочные к	от 25 до 600 мм	$U_{0.95} = 0.23 \text{ MKM}$	MK-05.63.19
	микрометрам типа		KT 1;	«Меры устано-
	МК и рычажным		KT 2	вочные к мик-
	1			рометрам типа
				МК и рычаж-
				ным.
				Методика
				калибровки»
3.12	Скобы с отсчетным	от 0 до 1000 мм	$U_{0.95} = 0.23 \text{ MKM}$	MK-05.118.19
	устройством	от о до тооо или	$\Pi\Gamma\pm0,001~\mathrm{mm}$	«Скобы с от-
	J I		$\Pi\Gamma$ \pm 0,020 мм	счетным
			- 7	устройством.
				Методика
				калибровки»
3.13	Скобы	от 0 до 150 мм	$U_{0.95} = 0.23 \text{ MKM}$	MK-05.119.19
3.13	рычажные	от о до то о ми	$\Pi\Gamma \pm 0,0007 \text{ mm}$	«Скобы
	psi iwanisi		$\Pi\Gamma\pm0,002~\mathrm{mm}$	рычажные.
			111 = 0,002 MM	Методика
				калибровки»
3.14	Головки измеритель-	± 0,010 мм	$U_{0.95} = 0.14 \text{ MKM}$	MK-05.14.19
3.14	ные пружинные мало-	± 0,010 MM	$\Pi\Gamma \pm 0,00015 \text{ MM}$	«Головки изме-
	габаритные (микато-		111 ± 0,00013 MM	рительные пру-
	ры) с	$\pm~0.025~\mathrm{mm}$	$U_{0.95} = 0.14 \text{ MKM}$	жинные (микро-
	ЦД 0,2 ; 0,5; 1; 2 мкм	± 0,023 MM	$\Pi\Gamma \pm 0,00025 \text{ mm}$	каторы) с ЦД
	цд 0,2 , 0,3, 1, 2 MKM		111 ± 0,00023 WIWI	0,2; 0,5; 1; 2
		$\pm~0.050~\mathrm{mm}$	$U_{0.95} = 0.14 \text{ MKM}$	0,2, 0,5, 1, 2 MKM.
		± 0,000 MINI	$\Pi\Gamma\pm0,0005$ mm	Методика
			111 ± 0, 0000 WIWI	калибровки»
		$\pm~0,\!100~\mathrm{mm}$	$U_{0.95} = 0.14 \text{ MKM}$	калиоровки»
		_ 0,100 MM	$\Pi\Gamma\pm 0{,}001~{ m mm}$	
			111 ± 0,001 MM	
3.15	Головки измеритель-	± 0,004 мм	$U_{0.95} = 0.14 \text{ MKM}$	MK-05.13.19
	ные пружинные (мик-		$\Pi\Gamma$ \pm 0,00008 мм	«Головки изме-
	рокаторы) с ЦД 0,1;			рительные пру-
	0,2; 0,5; 1; 2 мкм	$\pm~0,\!006~\mathrm{mm}$	$U_{0.95} = 0.14 \text{ MKM}$	жинные
	ные пружинные (микрокаторы) с ЦД 0,1;	,	ПГ± 0,00008 мм	рительные пру-

		$\pm0,\!015$ mm	$\Pi\Gamma\pm 0,0001$ мм $U_{0.95}=0,14$ мкм	малогабаритные (микаторы) с
		± 0,013 MM	$\Pi\Gamma \pm 0,00015$ MM	ЦД 0,2; 0,5; 1; 2
		$\pm~0.03~\mathrm{mm}$	$U_{0.95} = 0.14 \text{ MKM}$	MKM.
		= 0,05 MM	$\Pi\Gamma \pm 0,0003 \text{ mm}$	Методика
		$\pm~0.06~\mathrm{mm}$	$U_{0.95} = 0.14 \text{ MKM}$	калибровки»
		= 0,00 MM	$\Pi\Gamma\pm 0{,}0006~{ m mm}$	калпоровки
3.16	Головки измеритель-	± 0,012 мм	$U_{0.95} = 0.14 \text{ MKM}$	MK-05.12.19
3.10	ные пружинно-	= 0,012 MM	$\Pi\Gamma \pm 0,00006 \text{ mm}$	«Головки изме-
	оптические		111 = 0,00000 MM	рительные пру-
	(оптикаторы) с ЦД	± 0,025 mm	$U_{0.95} = 0.14 \text{ MKM}$	жинно-
	0,1; 0,2; 0,5 мкм	= 0,020 MM	$\Pi\Gamma\pm0,0001~\mathrm{mm}$	оптические
	-,-,-,-,-,-		0,0001	(оптикаторы) с
		$\pm~0.05~\mathrm{mm}$	$U_{0.95} = 0.14 \text{ MKM}$	ЦД 0,1; 0,2;
		= 0,00 MM	$\Pi\Gamma \pm 0,00015 \text{ MM}$	0,5 мкм.
			111 = 0,00013 MM	Методика
				калибровки»
3.17	Головки измеритель-	± 0,05 mm	$U_{0.95} = 0.58 \text{ MKM}$	MK-05.09.19
0.17	ные	0,00 111112	$\Pi\Gamma \pm 0.0004 \text{ mm}$	«Головки изме-
	рычажно-зубчатые		$\Pi\Gamma\pm0,0007~\mathrm{mm}$	рительные ры-
	parameter systematic		0,0007 11111	чажно-зубчатые.
	-	± 0,1 мм	$\Pi\Gamma\pm0,0008$ мм	Методика
		_ 0,1 mm	$\Pi\Gamma\pm0,0012~\mathrm{mm}$	калибровки»
3.18	Головки измеритель-	± 0,5 мм	$U_{0.95} = 0.12 \text{ MKM}$	MK-05.15.19
5.10	ные	= 0,0 mm	$\Pi\Gamma \pm (0.00030.002) \text{ MM}$	«Головки изме-
	электронные			рительные элек-
	P COLLEGE			тронные.
				Методика
				калибровки»
3.19	Индикаторы много-	от 0 до 2 мм	$U_{0.95} = 0.58 \text{ MKM}$	MK-05.31.19
	оборотные		KT 0;	«Индикаторы
	-		KT 1	многооборот-
				ные.
				Методика
				калибровки»
3.20	Головки и индикато-	$\pm (0100)$ mm	$U_{0.95} = 0.12 \text{ MKM}$	MK-05.11.19
	ры		$\Pi\Gamma \pm (0,340,0)$ мкм	«Головки и ин-
	цифровые			дикаторы
				цифровые.
				Методика
				калибровки»
3.21	Индикаторы часового	от 0 до 100 мм	$U_{0.95} = 0.46 \text{ MKM}$	MK-05.30.19
	типа с ЦД 0,01 мм		$\Pi\Gamma \pm (0,0050,070) \text{ mm}$	«Индикаторы
				часового типа.
				Методика
				калибровки»
3.22	Индикаторы	± (01,6) мм	$U_{0.95} = 0.12 \text{ MKM}$	MK-05.29.19
3.22	рычажно-зубчатые	- (01,0) WIVI	$\Pi\Gamma \pm (0.0020.025) \text{ MM}$	«Индикаторы
	PDI IMAGIO 370 IUIDIO		111 - (0,0020,023) WIWI	рычажно-
				зубчатые.
				Методика
				ттогодика

				калибровки»
3.23	Нутромеры индика- торные с ЦД 0,01 мм	от 6 до 1000 мм	U _{0.95} = 1,7 мкм КТ 1 КТ 2	МК-05.81.19 «Нутромеры индикаторные с ЦД 0,01 мм. Методика калибровки»
3.24	Нутромеры	от 0,95 до 160 мм	U $_{0.95}$ = 3,5 mkm $\Pi\Gamma$ \pm 0,003 mm $\Pi\Gamma$ \pm 0,015 mm	МК-05.80.19 «Нутромеры. Методика калибровки»
3.25	Нутромеры микро- метрические	от 50 до 2500 мм	$U_{0.95} = 1,2$ мкм $\Pi\Gamma \pm 0,004$ мм $\Pi\Gamma \pm 0,040$ мм	МК-05.82.19 «Нутромеры микрометрические. Методика калибровки»
3.26	Глубиномеры микро- метрические	от 0 до 150 мм	U _{0.95} = 0,46 мкм КТ 1; КТ 2	МК-05.08.19 «Глубиномеры микрометрические. Методика калибровки»
3.27	Глубиномеры индика- торные	от 0 до 100 мм	$U_{0.95} = 0.23$ мкм ПГ ± 0.050 мм	МК-05.07.19 «Глубиномеры индикаторные. Методика калибровки»
3.28	Стенкомеры индикаторные с ЦД 0,01 и 0,1 мм	от 0 до 50 мм	$U_{0.95}\!=\!0,\!46$ мкм ПГ $\pm0,\!015$ мм ПГ $\pm0,\!100$ мм	МК-05.124.19 «Стенкомеры. Методика калибровки»
3.29	Толщиномеры инди- каторные	от 0 до 10 мм от 0 до 25 мм от 0 до 50 мм	$U_{0.95} = 0,46 \text{ MKM}$ $\Pi\Gamma \pm 0,018 \text{ MM}$ $U_{0.95} = 0,46 \text{ MKM}$ $\Pi\Gamma \pm 0,08 \text{ MM}$ $U_{0.95} = 0,46 \text{ MKM}$ $\Pi\Gamma \pm 0,15 \text{ MM}$	МК-05.131.19 «Толщиномеры индикаторные. Методика калибровки»
3.30	Толщиномеры иголь- чатые	от 0 до 140 мм	U $_{0.95}$ = 0,46 мкм ПГ \pm 0,5 мм	МК-05.130.19 «Толщиномеры игольчатые. Методика калибровки»
3.31	Шаблоны путеизме- рительные	от 1510 до 1550 мм от 0 до 160 мм	U $_{0.95}$ $=$ $0,12$ мм $\Pi\Gamma\pm1$ мм	МК-05.144.19 «Шаблоны пу- теизмеритель-

3.32	Шаблоны радиусные, резьбовые	R (160) мм Шаг (0,46,0) мм Угол профиля 60°	$U_{0.95} = 3.5 \text{ MKM}$ $\Pi\Gamma \pm (0,0200,040) \text{ MM}$ $\Pi\Gamma \pm (0,0100,015) \text{ MM}$ $U_{0.95} = 4,0'$ $\Pi\Gamma \pm (2060)'$	ные. Методика калибровки» МК-05.156.19 «Шаблоны путеизмерительные (ЦУП). Методика калибровки» МК-05.179.20 «Шаблоны радиусные. Методика калибровки» МК-05.145.19 «Шаблоны резьбовые.
		Угол профиля 55°	$\Pi\Gamma \pm (2040)'$	Методика калибровки»
4	Средства измерений г	 цлины. Приборы опти	ко-механические	<u> </u>
4.1	Интерферометры контактные с переменной ценой деления	от 0 до 500 мм	$U_{0.95} = 0.07$ мкм $\Pi\Gamma \pm (0.000035 0.000084)$ мм	МК-05.32.19 «Интерферометры контактные с переменной ценой деления. Методика калибровки»
4.2	Длиномеры верти- кальные, высотомеры	от 0 до 1000 мм	$U_{0.95} = 0.23 \text{ MKM}$ $\Pi T \pm \left((0.0014 + \frac{L}{140000}) 0.020 \right)_{MM}$	МК-05.21.19 «Длиномеры вертикальные, высотомеры. Методика калибровки»
4.3	Длиномеры горизон- тальные	от 0 до 1050 мм	$U_{0.95} = 0.14 \text{ MKM}$ $H\Gamma \pm \left(0.1 + \frac{L}{2000}\right) \dots $ $\left(3.0 + \frac{L}{100}\right) MKM$	МК-05.22.19 «Длиномеры горизонтальные. Методика калибровки»
	Приборы универсальные Multimar	(02575) мм	$U_{0.95}$ =0,14 мкм ПГ± (0,0060,040) мкм 3 разряд	МК-05.103.19 «Приборы уни- версальные Mul- timar. Методика калибровки»
4.4	Приборы универсальные для измерений длины	от 0 до 200 мм	U _{0.95} = 0,024 мкм 2 разряд	МК-05.170.20 «Приборы для измерения дли- ны (ULM) 2 раз-

			$\Pi\Gamma \pm \left(0.09 + \frac{L}{2000}\right)$ мкм	ряд. Методика калибровки»
				казторовки
4.5	Оптиметры верти- кальные и горизон- тальные	от 0 до 500 мм	$U_{0.95}\!=\!0,\!46$ мкм $\Pi\Gamma\pm0,\!0002$ мм $\Pi\Gamma\pm0,\!0003$ мм	МК-05.84.19 «Оптиметры вертикальные и горизонтальные. Методика калибровки»
1.6	M	0 4000	11 0.22	MIC 05 55 10
4.6	Машины оптико- механические	от 0 до 4000 мм	$U_{0.95} = 0.23 \text{ MKM}$ $III \pm \left(0.0003 + \frac{L}{200000}\right)_{MM}$ $III \pm \left(0.0003 + \frac{L}{100000}\right)_{MM}$	МК-05.55.19 «Машины опти- ко- механические.
			100000)	Методика
4.7	Компараторы гори-	от 0 до 200 мм	U _{0.95} = 2,8 мкм	калибровки» МК-05.39.19
4.7	зонтальные	01 0 до 200 мм	$\Pi\Gamma \pm \left(0.9 + \frac{L}{300 + 4H}\right)_{MKM}$	«Компараторы
	001111111111111111111111111111111111111		$1H \pm \left(0.9 + \frac{1}{300 + 4H}\right)^{MKM}$	горизонтальные.
				Методика
				калибровки»
4.8	Машины измеритель-	от 0 до 6000 мм	$U_{0.95} = 0.14 \text{ MKM}$	MK-05.54.19
	ные	and the same	$\Pi\Gamma \pm (0,00050,2)$ mm	«Машины изме-
	трехкоординатные			рительные трех-
				координатные. Методика
				калибровки»
4.9	Приборы двухкоор-	100х200 мм	$U_{0.95} = 2.8 \text{ MKM}$	MK-05.94.19
	динатные измери-		$III\Gamma \pm \left(1,4 + \frac{L}{80}\right)_{MM}$	«Приборы двух-
	тельные			координатные
			$II\Gamma \pm \left(1 + \frac{L}{200}\right)_{MKM}$	измерительные. Методика
				калибровки»
4.10	Проекторы измери-	от 0 до 150 мм	$U_{0.95} = 2.8 \text{ MKM}$	MK-05.110.19
	тельные		$\Pi\Gamma$ \pm 0,006 мм	«Проекторы из-
				мерительные.
		увеличение 10, 20, 50,100, 200 ^x	$\Pi\Gamma$ \pm 0,2 мм	Методика калибровки»
		от 0 до 360°	$U_{0.95} = 12$ " $\Pi\Gamma \pm 5$ '	
4.11	Микрометры окуляр-	от 0 до 8 мм,	U _{0.95} = 1,2 мкм	MK-05.68.19
	ные	увеличение	$\Pi\Gamma\pm0,\!010$ мм	«Микрометры
	винтовые	от 4 до 25 ^х		окулярные
				винтовые. Методика
				методика калибровки»
				1

4.10	M		11 0 12	MIC 05 75 10
4.12	Микроскопы отсчет-	увеличение	$U_{0.95} = 0.12 \text{ MKM}$	MK-05.75.19
	ные	от 19 до 50 ^х от 0 до 7,0 мм	$\Pi\Gamma$ ± (0,0060,02) мм	«Микроскопы
		01 0 до 7,0 мм		отсчетные. Методика
				калибровки»
				калиоровки»
4.13	Микроскопы инстру-	от 25х75	$U_{0.95} = 0.12 \text{ MKM}$	MK-05.74.19
	ментальные	до 50х150 мм	$\Pi\Gamma$ \pm 0,003 мм	«Микроскопы
				инструменталь-
				ные. Методика
				калибровки»
4.14	Микроскопы универ-	100х200 мм	$U_{0.95} = 2.8 \text{ MKM}$	MK-05.72.19
	сальные	1001120011111	$\Pi\Gamma \pm \left(1.4 + \frac{L}{80}\right)_{MKM}$	«Микроскопы
			$m = \left(1, \frac{1}{80}\right)^{m \times m}$	универсальные.
				Методика
				калибровки»
				-
5		длины в диапазоне до '		MIC 05 05 10
5.1	Базисы линейные	от 0 до 3000 м	$U_{0.95} = 0.23 \text{ MM}$	MK-05.05.19
			$\Pi\Gamma \pm 2 \cdot 10^{-6} \mathrm{L}$, MM	«Базисы линей-
			2 разряд	ные. Методика
			$\Pi\Gamma\pm(1,515,0)$ мм 3 разряд	калибровки»
			3 разряд	
5.2	Светодальномеры	от 0,05 до 4000 м	$U_{0.95} = 0.23 \text{ mm}$	MK-05.114.19
			$\Pi\Gamma$ \pm (11000) мм	«Светодально-
				меры. Методика
				калибровки»
6	Средства измерений р	разности координат по	сигналам космических н	авигационных
	систем			,
6.1	Геодезические спут-	диапазон измерений	$U_{0.95} = 0.23 \text{ MM}$	MK-05.06.19
	никовые и навигаци-	в статике –	СКП	«Геодезические
	онные системы	от 0,001 до 20 км	$\pm (2+1\cdot L)$ мм, где	спутниковые и
			L – в км	навигационные
				системы.
				Методика ка- либ-ровки»
				лио-ровки»
7	Средства измерений г	тараметров шероховат	ости	
7.1	Микроинтерферомет-	от 0,0001 до 0,0008	$U_{0.95} = 2.3 \text{ MKM}$	MK-05.66.19
	ры	MM	СКО 0,00004 мм	«Микроинтер-
				ферометры.
				Методика ка-
				либровки»
7.2	Приборы для измере-	R _a от 0,02 до 400 мкм	U _{0.95} = 1,2 %	MK-05.95.19
,	ний параметров ше-	114 01 0,02 A0 100 MKM	$\Pi\Gamma \pm (210)\%$	«Приборы для
	роховатости и конту-		3 разряд	измерений па-
	ра поверхности		э разрид	раметров шеро-
	1 1			ховатости и
				контура поверх-
<u>. </u>		1		71L.

				T
				ности.
				Методика ка-
				либровки»
				-
7.3	05	D == 0.02 == 400 =====	11 220/	MK-05.07.18
1.3	Образцы шероховато-	R _a от 0,02 до 400 мкм	$U_{0.95} = 2.3 \%$	
	сти поверхности		ΠΓ±(1712) %	«Образцы ше-
	(сравнения)			роховатости по-
				верхности
				(сравнения).
				Методика ка-
				либровки»
7.4	M	D 0.4 25	11 220/	MIC 05 72 10
7.4	Микроскопы двойные	R _a от 0,4 до 25 мкм	$U_{0.95} = 2.3 \%$	MK-05.73.19
			$\Pi\Gamma\pm$ (4,524) %	«Микроскопы
				двойные.
				Методика ка-
				либровки»
		<u> </u>		
8		тклонений от круглос		MIC 05 45 10
8.1	Кругломеры, приборы	от 0,5 до 500 мкм	$U_{0.95} = 0.023 \text{ MKM}$	MK-05.45.19
	и системы для изме-	. 2	$\Pi\Gamma \pm (0,0250,15)$ MKM	«Кругломеры,
	рений отклонений от	± 2 мм	KT 1	приборы и си-
	круглости		KT 2	стемы для изме-
				рений отклоне-
				ний от кругло-
				сти.
				Методика ка-
				либровки»
8.2	Меры отклонения от	ДИАМ	U _{0.95} = 3,5 %	MK-05.60.19
0.2	круглости	от 1 до 100 мм	$\Pi\Gamma \pm 0.2$ MKM	«Меры отклоне-
	круглости	01 1 до 100 мм	111 ± 0.2 MKM	-
				ния от кругло-
				сти.
				Методика ка-
				либровки»
9	Спедства измороний с	типонений от пломос	тности интерференционн	ILIA
9.1	Пластины плоские	ДИАМ	тности интерференционн U _{0.95} = 0,058 мкм	MK-05.87.19
7.1	стеклянные нижние	от 60 до 120 мм	KT 2	«Пластины
	отоклипные нижние	01 00 до 120 мм	K1 Z	
		30 мм	ПГ 0 0002	плоские стек-
		SU MM	$\Pi\Gamma\pm0,\!0003$ мм	лянные.
				Методика ка-
				либровки»
9.2	Пластины плоскопа-	ДИАМ	$U_{0.95} = 0.058 \text{ MKM}$	MK-05.88.19
7.2	раллельные стеклян-	от 30 до 50 мм	$\Pi\Gamma \pm 0{,}0001$ mm	«Пластины пло-
	ные	от зо до зо им	111 ± 0,0001 MINI	
	IIDIC	DI IOOTTO		скопараллель- ные стеклянные.
		высота	ПГ - 0 0010 год	
		от 15 до 90 мм	$\Pi\Gamma\pm0,\!0010$ мм	Методика ка-
		Н 0,1 мкм		либровки»

9.3	Бруски контрольные		$U_{0.95} = 0.047 \text{ MKM}$	MK-05.08.20
			4 разряд	«Бруски кон-
		L от 150 до 500 мм	PV (0,21,0) мкм	трольные. Методика ка- либровки»
		L от 100 до 1000 мм	PV (0,24,0) мкм	The state of the s
10	Средства измерений с		инейности и плоскостнос	
10.1	Нивелиры	от 0 до 360°	$U_{0.95} = 0.58 \text{ mm/km}$	MK-05.77.19
			$CK\Pi \pm (0,85)$ мм/км	«Нивелиры.
				Методика ка- либровки»
				лиоровки//
10.2	Линейки	от 0,4 до 5,0 м	$U_{0.95} = 0.36 \text{ MKM}$	MK-05.50.19
	поверочные	Н от 1,6 до 5,0 мкм	KT 00	«Линейки пове-
	тип ШМ, ШМ-ТК			рочные тип ШМ,
		от 0,4 до 3,0 м	$U_{0.95} = 0.36 \text{ MKM}$	ШМ-ТК тип ШМ тип ШП,
		H от 2,5 до 12,0 мкм	2 разряд	ШПХ тип ШД.
		11 01 2 ,0 A0 1 2 ,0 Max	KT 0	Методика ка-
				либровки»
		от 0,4 до 1,6 м	$U_{0.95} = 0.36 \text{ MKM}$	
		Н от 4 до 10,0 мкм	KT 01	
		от 0,4 до 1,6 м	$U_{0.95} = 0.36 \text{ MKM}$	
		Н от 6 до 16 мкм	3 разряд	
			KT 1	
	тип ШМ	от 0,4 до 3,0 м	$U_{0.95} = 0.36 \text{ MKM}$	
		Н от 10 до 50 мкм	KT 2	
	THE HID HIDV	от 0.4 го 0.62 м	II – 0.26 ymy	
	тип ШП, ШПХ	от 0,4 до 0,63 м Н от 10 до 12 мкм	U _{0.95} = 0,36 мкм КТ 2	
		11 01 10 до 12 мим	K1 2	
	****	10.16	2.2	
	тип ШД	от 1,0 до 1,6 м	$U_{0.95} = 0.36 \text{ MKM}$	
		Н от 10 до 16 мкм	3 разряд КТ 1	
			101 1	
		от 0,63 до 2,50 м	$U_{0.95} = 0.36 \text{ MKM}$	
		Н от 12 до 40 мкм	KT 2	
10.3	Линейки поверочные	от 50 до 500 мм	$U_{0.95} = 1,2 \text{ MKM}$	MK-05.49.19
10.5	лекальные	H от 1,2 до 2,0 мкм	KT 0	«Линейки пове-
		Н от 1 до 3 мкм	KT 1	рочные лекаль-
				ные.

				Методика калибровки»
10.4	Плиты поверочные	от 250 до 2500 мм Н от 2 до 8 мкм	U _{0.95} = 0,36 мкм КТ 00	МК-05.89.19 «Плиты пове- рочные.
		от 250 до 2500 мм Н от 4 до 16 мкм	U $_{0.95}$ = 0,36 мкм КТ 0	Методика калибровки»
		от 250 до 2500 мм Н от 8 до 30 мм	U _{0.95} = 0,36 мкм КТ 1	
		от 250 до 2500 мм Н от 16 до 60 мкм	U $_{0.95}$ = 0,36 мкм КТ 2	
		от 250 до 2500 мм Н от 30 до 120 мкм	$U_{0.95} = 0.36 \text{ MKM}$ KT 3	
10.5	Призмы поверочные и разметочные	от 35х40х30 до 300х125х180 мм	U _{0.95} = 2,3 мкм КТ 1; КТ 2	МК-05.104.19 «Призмы поверочные и разметочные. Методика калибровки»
11	Средства измерений г	параметров резьб		
11.1	Ножи измерительные	0,3; 0,9 мм	U $_{0.95}$ = 1,65 мкм ПГ \pm 0,0005 мм	МК-05.78.19 «Ножи измери- тельные. Методика калибровки»
11.2	Калибры резьбовые пробки,	ДИАМ от 1 до 360 мм при Р от 0,35 до 6,00 мм	U _{0.95} = 0,12 мкм (48) степень точности	МК-05.34.19 «Калибры резь- бовые пробки, кольца. Методика
	кольца	ДИАМ от 3 до 110 мм при Р от 0,45 до 8,00 мм		калибровки»
12	Средства измерений г	ілоского угла		•
12.1	Меры плоского угла призматические тип 2; тип 3; тип 4	от 0 до 360°	U _{0.95} = 2,3" KT 1; KT 2 3 разряд 4 разряд	МК-05.61.19 «Меры плоского угла призмати- ческие тип 2; тип 3; тип 4. Методика

				калибровки»
12.2	Угольники поверочные 90° всех типов	от 60 до 630 мм от 630 до 1000 мм	$U_{0.95} = 1,0$ мкм KT 0; KT 1; KT 2 $U_{0.95} = 1,0$ мкм KT 2	МК-05.136.19 «Угольники поверочные 90° всех типов. Методика калибровки»
12.3	Угломеры маятниковые	от 0 до 360°	$U_{0.95} = 35$ " $\Pi\Gamma \pm 1^{\circ}$	МК-05.134.19 «Угломеры маятниковые. Методика калибровки»
12.4	Угломеры с нониусом	от 0 до 360°	$U_{0.95} = 35$ " $\Pi\Gamma \pm 2'$; $\Pi\Gamma \pm 5'$; $\Pi\Gamma \pm 10'$	МК-05.135.19 «Угломеры с нониусом. Методика калибровки»
12.5	Приборы для поверки угловых мер тип КПУ-3	от 10 до 100°	$U_{0.95} = 12"$ $\Pi\Gamma \pm 3"$ $\Pi\Gamma \pm 5"$	МК-05.91.19 «Приборы для поверки угловых мер тип КПУ-3. Методика калибровки»
12.6	Головки делительные оптические	от 0 до 360°	U _{0.95} = 1,2 " ΠΓ± (5 40)"	МК-05.10.19 «Головки делительные оптические. Методика калибровки»
12.7	Гониометры	от 0 до 360°	U _{0.95} = 1,2 " ПГ 2"; ПГ 5" 2 разряд	МК-05.16.19 «Гониометры. Методика калибровки»
12.8	Автоколлиматоры	от 0 до 40'	$U_{0.95} = 0.067$ " $\Pi\Gamma \pm (1.510)$ " 1 разряд 2 разряд	МК-05.03.19 «Автоколлима- торы. Методика калибровки»
12.9	Экзаменаторы	±1000"	$U_{0.95} = 0.067$ " $\Pi\Gamma \pm (410)$ " $\Pi\Gamma \pm (0.12 + 2 \cdot a \cdot 10^{-4})$ " 1 разряд 2 разряд	МК-05.153.19 «Экзаменаторы. Методика калибровки»

12.10	Уровни электронные	± 600"	$U_{0.95} = 0.067$ " $\Pi\Gamma \pm (0.2 + 0.03 \cdot a)$ "	МК-05.140.19 «Уровни элек- тронные. Мето- дика калибровки»
12.11	Квадранты	от 0 до 360°	$U_{0.95} = 1,2$ " $\Pi\Gamma \pm (1030)$ "	МК-05.35.19 «Квадранты. Методика калибровки»
12.12	Уровни рамные и брусковые	L = 200 мм	$U_{0.95} = 2.3$ " $\Pi\Gamma \pm (0.005$ $0.040) \text{ mm/m}$	МК-05.138.19 «Уровни рамные и брусковые. Методика калибровки»
12.13	Уровни с микрометрической подачей ампулы	от 10 до 30 мм/м	$U_{0.95} = 2.3$ " $\Pi\Gamma \pm (0.010,10) \text{ mm/m}$	МК-05.139.19 «Уровни с микрометрической подачей ампулы. Методика калибровки»
12.14	Тахеометры элек- тронные	от 0 до 360°	U _{0.95} = 0,34" СКП ± (0,510)" 2 разряд 4 разряд	МК-05.128.19 «Тахеометры электронные, теодолиты. Методика калибровки»
12.15	Теодолиты	от 0 до 360°	$U_{0.95} = 0.34$ " $CK\Pi \pm (0.560)$ " 2 разряд 4 разряд	МК-05.128.19 «Тахеометры электронные, теодолиты. Методика калибровки»
12.16	Клинья для поверки синусных линеек	(1545)°	U _{0.95} =2,3" ΠΓ ± 10"	МК-05.129.20 «Клинья для поверки синус- ных линеек, Ме- тодика калиб- ровки»
13	Дефектоскопы, толщи		ним доступом к объекту	,
13.1	Преобразователи ультразвуковые	от 1 до 180 мм	U _{0.95} = 0,35 % ΠΓ ± 1 %	МК-05.20.19 «Преобразователи ультразву-
		от 4 до 180 мкс	$U_{0.95} = 159 \text{ m/c}$ $\Pi\Gamma \pm (0.01\text{T} + 0.05) \text{ mm}$	ковые. Методи- ка калибровки»
13.2	Дефектоскопы уль-	от 0 до 1500 мм	U _{0.95} = 0,58 %	MK-05.19.19

	тразвуковые		$\Pi\Gamma \pm (1+0,003X)$ mm	«Дефектоскопы
	гразвуковые		$\Pi\Gamma \pm (1+0.003 \text{ Y}) \text{ MM}$ $\Pi\Gamma \pm (1+0.003 \text{ Y}) \text{ MM}$	ультразвуковые.
			$\Pi\Gamma \pm (0.5+0.0015H) \text{ MM}$	Методика ка-
			111 = (0,5 · 0,001211) MM	либровки»
				тиоровии
13.3	Дефектоскопы вихре-	от 0,5 до 3,0 мм	$U_{0.95} = 17 \text{ MKM}$	MK-05.18.19
	токовые портативные		$\Pi\Gamma\pm0.2~\mathrm{mm}$	«Дефектоскопы
	ВД 3-71 НК-ІVУ,		,	вихретоковые
	ВИТ-4			портативные ВД
				3-71 НК-IVУ,
				ВИТ-4. Методи-
				ка
				калибровки»
13.4	Меры толщины по-	от 3 до 120 000 мкм	$U_{0.95} = 0.12 \text{ MKM}$	MK-05.62.20
1011	крытия	910 ge 120 000 mm	$\sigma \pm (0.01 \cdot h \dots$	«Меры толщи-
	1		$(0,5+0,02\cdot h)$ мкм	ны покрытия.
			$\Pi\Gamma \pm (2,515) \%$	Методика ка-
			$\Pi\Gamma \pm (0,0020,350) \text{ MM}$	либровки»
			СКО (0,4120,0) мкм	MK-05.172.20
			Рабочий эталон	«Меры толщи-
				ны гальваниче-
				ских покрытий.
				Методика
				калибровки»
13.5	Толщиномеры уль-	от 0,6 до 300 мм	$U_{0.95} = 69 \text{ m/c}$	MK-05.133.19
	тразвуковые		$\Pi\Gamma\pm(0,015~0,1)$ мм	«Толщиномеры
			$\Pi\Gamma$ \pm ((0,001h +	ультразвуковые.
			0,02)(0,001h +	Преобразовате-
			0,1)) мм	ли ультразвуко-
				вые. Методика
				калибровки»
13.6	Измерители защитно-	от 2 до 140 мм	$U_{0.95} = 0.023 \text{ mm}$	MK-05.25.19
	го слоя бетона		$\Pi\Gamma$ \pm (0,5+0,03H) мм	«Измерители
			$\Pi\Gamma\pm(0,5+0,05H)$ мм	защитного слоя
			$\Pi\Gamma \pm (0.05 h_{3c} + 0.5)$ мм	бетона. Методи-
				ка
				калибровки»
14	Средства измерений т	олщины покрытий		
14.1	Измерители толщины	от 0 до 10 мм	$U_{0.95} = 0.12 \text{ MKM}$	MK-05.27.19
	диэлектрических по-		$\Pi\Gamma\pm0,5$ мм	«Измерители
	крытий вихретоковые			толщины ди-
				электрических
				покрытий вих-
				ретоковые. Ме-
				тодика
				калибровки»
14.2	Приборы измерения	от 0,020 до 70 мм	$U_{0.95} = 0.12 \text{ MKM}$	MK-05.102.19
	геометрических пара-		$\Pi\Gamma$ ± (0,0011,5) мм	«Приборы изме-
	-			_

	метров многофункци- ональные Константа			рения геометрических параметров многофункциональные Константа. Методика калибровки»
14.3	Эталоны чувстви- тельности канавочные	от 0,6 до 4,0 мм от 2,5 до 6,0 мм от 0,5 до 3,0 мм	$U_{0.95} = 17$ мкм $\Pi\Gamma \pm (0,050,30)$ мм $U_{0.95} = 17$ мкм $\Pi\Gamma \pm 0,40$ мм $U_{0.95} = 17$ мкм $\Pi\Gamma \pm (0,10,3)$ мм	МК-05.154.19 «Эталоны чув- ствительности канавочные. Методика ка- либровки»
14.4	Толщиномеры покрытий	от 0 до 25 мм	$U_{0.95} = 0.12 \text{ MKM}$ $\Pi\Gamma \pm (15) \%$	мК-05.132.19 «Толщиномеры покрытий. Ме- тодика калиб- ровки»
15	Средства измерений п	лощади		
15.1.	Планиметры пропор- циональные и корне- вые	R от 22,5 до 135 мм	$U_{0.95} = 3.5 \text{ мкм}$ ПГ ± $(0,20,3)$ %	МК-05.86.19 «Планиметры пропорциональ- ные и корневые. Методика калибровки»
16	Прочие геометрическ	ие СИ		
16.1	Комплект контрольных образцов и вспомогательных устройств, КОУ-2	2670 м/с 5900 м/с	$U_{0.95} = 160 \text{ m/c}$ $\Pi\Gamma \pm 148 \text{ m/c}$ $U_{0.95} = 160 \text{ m/c}$ $\Pi\Gamma \pm 118 \text{ m/c}$	МК-05.43.19 «Комплект контрольных образцов и вспомогательных. Методика калибровки»
16.2	Комплект образцов КСОП-70	Н от 0,1 до 10,0 мм В от 0,1 до 10,0 мм s от 0,1 до 10,0 мм	$U_{0.95} = 0.23 \%$ $\Pi\Gamma \pm (0.050,50) \text{ MM}$ $U_{0.95} = 0.23 \%$ $\Pi\Gamma \pm 0.3X$ $U_{0.95} = 0.23 \%$ $\Pi\Gamma \pm (0.050,50) \text{ MM}$	МК-05.44.19 «Комплект образцов КСОП-70. Методика калибровки»
16.3	Приспособления для поверки плит и линеек	L = 1000 мм	$U_{0.95} = 0,47$ мкм ПГ $\pm 0,002$ мм	МК-05.105.19 «Приспособления для поверки плит и линеек. Методика калибровки»

16.4	Приспособления с микрометрической головкой для поверки: - индикаторов часового типа с ЦД 0,01 мм - индикаторов рычажно —зубчатых с ЦД 0,01 мм - нутромеров индикаторных с ЦД 0,01 мм	от 0 до 25 мм	$U_{0.95} = 0.23$ мкм ПГ ± 0.002 мм	МК-05.106.19 «Приспособления с микрометрической головкой для поверки индикаторов часового типа и рычажно — зубчатых. Методика с микрометрической головкой для поверки нутромеров индикаторных. Методика калибровки»
16.5	Приборы и приспо- собления для поверки угольников	от 40 до 630 мм	$U_{0.95} = 0.14$ мкм ПГ \pm (0,0003 0,0005) мм ПГ \pm (0,0050,040) мм	МК-05.92.19 «Приборы и приспособления для поверки угольников. Методика калибровки»
16.6	Стойки и штативы	от 0 до 250 мм	$U_{0.95} = 0.23$ мкм ПГ ± (0.00060,004) мм	МК-05.125.19 «Стойки и штативы. Методика калибровки»
16.7	Сита лабораторные	от 0,04 до 70 мм	$U_{0.95} = 1,6$ мкм ПГ ± (0,0040,650) мм	МК-05.116.19 «Сита лабора- торные. Мето- дика калибровки»
16.8	Измерители радиальных отклонений, ИРО-1000	от 0 до 1000 мм	U $_{0.95}$ = 0,23 мкм $\Pi\Gamma\pm1$ мм	МК-05.28.19 «Измеритель радиальных отклонений, ИРО-1000. Методика калибровки»
16.9	Анализаторы размеров частиц	от 0,030 до 5,000 мм	U _{0.95} = 5,0 % ΠΓ ± (1015) %	МК-05.04.19 «Анализаторы размеров частиц.

				Методика ка- либровки»
16.10	Системы оптические B.O.S.S.	от 0 до 6 мм	$U_{0.95} = 2,3$ мкм ПГ $\pm 0,02$ мм	МК-05.115.19 «Системы опти- ческие В.О.S.S. Методика ка- либровки»
16.11	Шаблоны универ- сальные	от 0 до 220 мм	$U_{0.95} = 0,46$ мкм ПГ $\pm (0,250,5)$ мм	МК-05.146.19 «Шаблоны универсальные. Методика калибровки»
16.12	Сканеры лазерные и системы сканирую- щие	от 0,2 до 1000 м	$U_{0.95} = 0.23$ мм ПГ ± (150) мм	МК-05.117.19 «Сканеры ла- зерные и систе- мы сканирую- щие. Методика калибровки»
16.13	Рейки дорожные универсальные	от 0 до 3000 мм от 0 до 45°	$U_{0.95} = 1,2 \text{ mm}$ $\Pi\Gamma \pm 5 \text{ mm}$ $U_{0.95} = 35$ " $\Pi\Gamma \pm 1 \%$	МК-05.112.19 «Рейки дорожные универсальные. Методика калибровки»
16.14	Стенд для контроля путевых шаблонов	от 1510 до 1550 мм от 0 до 160 мм	$U_{0.95} = 0.23 \ \text{мкм}$ $\Pi\Gamma \pm 0.1 \ \text{мм}$ $U_{0.95} = 0.46 \ \text{мкм}$ $\Pi\Gamma \pm 0.2 \ \text{мм}$	МК-05.121.19 «Стенд для контроля путевых шаблонов. Методика калибровки»
16.15	Дозаторы-пробники Журавлева	27 cm ³	$U_{0.95} = 0.023 \text{ mm}$ $\Pi\Gamma \pm 0.5 \text{ cm}^3$	МК-05.23.19 «Дозаторы- пробники Жу- равлева. Мето- дика калибровки»
16.16	Приборы для проверки изделий на биение в центрах	радиальное биение от 0 до 10 мм, торцевое биение от 0 до 10 мм	$U_{0.95} = 0.23 \%$ $\Pi\Gamma \pm (0.0100.015) \text{ mm}$ $U_{0.95} = 0.23 \%$ $\Pi\Gamma \pm (0.0100.015) \text{ mm}$	МК-05.99.19 «Приборы для проверки изделий на биение в центрах. Методика калибровки»
16.17	Прибор для измере- ния расстояний «Даль»	от 3,5 до 9,0 м	$U_{0.95} = 1,2 \text{ mm}$ $\Pi\Gamma \pm 2 \%$	МК-05.90.19 «Прибор для измерения рас-

				стояний «Даль». Методика ка- либровки»
16.18	Курвиметры	от 0,8 до 999,99 м	$U_{0.95} = 1,2$ мм $\Pi\Gamma \pm (0,005 \cdot L + 0,01)$ м	МК-05.46.19 «Курвиметры. Методика ка- либровки»
16.19	Пенетрометры	от 0 до 400 единиц пенетрации от 0 до 50 мм	$U_{0.95}$ =0,46 мкм $\Pi\Gamma\pm0,1$ мм	МК-05.85.19 «Пенетрометры. Методика калибровки»
16.20	Нормалемеры	от 0 до 700 мм	$U_{0.95} = 0,46$ мкм ПГ $\pm (0,0030,040)$ мм	МК-05.79.19 «Нормалемеры. Методика ка- либровки»
16.21	Линейки синусные	от 100 до 300 мм	U _{0.95} = 12" KT 1 KT 2	МК-05.51.19 «Линейки си- нусные. Мето- дика калибровки»
16.22	Комплексы измерительные передвижные дорожных лабораторий	от -90 до +90° от -105 до +105 ‰ от 0 до 10 ⁶ м от 0 до 3 мм k от 0,15 до 0,65	$U_{0.95} = 1,2 \text{ mm}$ $\Pi\Gamma \pm 2^{\circ}$ $U_{0.95} = 1,2 \text{ mm}$ $\Pi\Gamma \pm 3 \%$ $\Pi\Gamma \pm 5 \%$ $U_{0.95} = 1,2 \text{ mm}$ $\Pi\Gamma \pm (0,10,2) \%$ $U_{0.95} = 1,2 \text{ mm}$ $\Pi\Gamma \pm 0,02 \text{ mm}$ $\Pi\Gamma \pm 5 \%$	МК-05.42.19 «Комплексы измерительные передвижные дорожных лабораторий. Методика калибровки»
16.23	Тахеометры элек- тронные	от 0 до 3000 м	$U_{0.95} = 0,23$ мм $\Pi\Gamma \pm (210)$ мм/км	МК-05.127.19 «Тахеометры электронные. Методика калибровки»
16.24	Универсальные коллиматорные стенды, установки для поверки тахеометров, теодолитов, нивелиров	от 0 до 360°	$U_{0.95} = 5.8$ " СКО \pm (0,62,0)" 3 разряд	МК-05.137.19 «Стенды универсальные коллиматорные. Методика калибровки»
16.25	Прогибомеры	от 0 до 100 мм	$U_{0.95} = 0,46$ мкм ПГ± $(0,030,50)$ мм	МК-05.109.19 «Прогибомеры. Методика калибровки»
16.26	Комплексы измери-	от 0,0625	$U_{0.95} = 2,3 \text{ MKM}$	MK-05.41.19

16.27	тельные анализа изображений микро-структур материалов Измерители длины	до 10240 мкм	$\Pi\Gamma$ ± (0,062512) мкм $U_{0.95}$ = 1,2 мм	«Комплексы измерительные анализа изображений микроструктур материалов. Методика калибровки»
10.27	длиномерных материалов	до 100 000 м	$\Pi\Gamma \pm (0.050,8)\%$	«Измерители длины длино- мерных матери- алов. Методика калибровки»
16.28	Лупы измерительные	от 0 до 15 мм	$U_{0.95} = 1,0$ мкм ПГ± (0,0100,020) мм	МК-05.52.19 «Лупы измерительные. Методика калибровки»
16.29	Устройство для контроля геометрических параметров автомобильных дорог	от 0 до 3000 мм от 0,8 до 999,99 м	$U_{0.95}$ =1,2 мм H 0,2 мм $U_{0.95}$ =1,2 мм $\Pi\Gamma\pm (0,005\cdot L+0,01)$ м	МК-05.143.19 «Устройство для контроля геометрических параметров автомобильных дорог. Методика калибровки»
16.30	Гриндометры	от 0 до 150 мкм	$U_{0.95} = 2,3$ мкм $\Pi\Gamma \pm (110)$ мкм	МК-05.17.19 «Гриндометры. Методика калибровки»
	<u>МЕРЕНИЯ МЕХАНИЧ</u>			
17 17.1	Средства измерений ма Весы общего назначения	(0,00220) кг	U _{0.95} = 0,002 мг КТ 2	МК-03.01.17 «Весы неавто-
		(0,02 20) кг (0,2 50) кг (0,0210) кг (0,250) кг	(специальный I) $U_{0.95} = 0{,}007 \text{ мг}$ $U_{0.95} = 0{,}02 \text{ мг}$ $KT 3 \text{ (высокий II)}$ $U_{0.95} = 0{,}007 \text{мг}$ $U_{0.95} = 0{,}007 \text{мг}$ $U_{0.95} = 0{,}02 \text{ мг}$ $KT 4 \text{ (высокий II, средний III)}$	матического действия. Мето- дика калибров- ки»
17.2	Весы крутильные торсионные	от 0,02 до 5 г	$U_{0,95} = 0,004 \ m{M}\Gamma$ $\Pi\Gamma \pm (0,0510) \ m{M}\Gamma$	МК-03.34.21 «Весы крутильные торсионные.

				Методика ка- либровки»
17.3	Весы маслопробные	от 0 до 10 г	$U_{0,95}=0,02$ мг П $\Gamma\pm5$ мг	МК-03.35.21 «Весы масло-пробные. Методика калибровки»
17.4	Весы неавтоматического действия	(0,002500) кг (0,012000) кг (0,025000) кг (0,0420000) кг (100200000) кг	$U_{0.95} = 0.5 \text{ мг}$ $U_{0.95} = 2.3 \text{ мг}$ $U_{0.95} = 2.9 \text{ мг}$ $U_{0.95} = 5.8 \text{ мг}$ $U_{0.95} = 5780 \text{ мг}$ КТ III (средний)	МК-03.01.17 «Весы неавтоматического действия. Методика калибровки»
17.5	Весы неавтоматического действия	(1·10 ⁻⁶ 20) кг (0,13000,0) кг	U _{0.95} =0,006 мг КТ I, КТ II U _{0.95} =0,034 мг, КТ II	МК-03.01.17 «Весы неавтоматического действия. Методика калибровки»
17.6	Весы крановые	(1·10 ⁻⁴ 2·10 ⁵) кг (10050000) кг	$U_{0.95}$ =0,18 мг, 5 разряд $U_{0.95}$ = 5780 мг КТ средний ПГ ± (13) е	МК-03.29.20 «Весы крановые. Методика калиб- ровки»
17.7	Весы крановые	(0,001100,0) кг	U _{0.95} =0,578 мг КТ III (средний) ПГ ± (13) е	МК-03.29.20 «Весы крановые. Методика калиб- ровки»
17.8	Весы для взвешивания транспортных средств в движении	от 0,2 до 50 т от 0,6 до 60 т	$U_{0.95} = 12000 \text{ M} \Gamma$ $U_{0.95} = 29000 \text{ M} \Gamma$ $KT 0,2; 0,5; 1; 2$	МК-03.22.20 «Весы для взвешивания транспортных средств в движении. Методика калибровки»
17.9	Весы для взвешивания вагонов в движении	от 1 до 100 т от 2 до 200 т	U _{0.95} = 29000 мг U _{0.95} = 116000 мг КТ средний, КТ (0,22)	МК-03.22.20 «Весы для взве- шивания транс- портных средств в движении. Ме- тодика калиб- ровки»
17.10	Весовые транспортируемые устройства	от 10 до 100000 кг	$U_{0,95} = 578 \ m MГ$ $\Pi\Gamma \pm (0,15060) \ m KГ$	МК-03.28.20 «Весовые транспортируемые устройства. Методика калиб-

				ровки»
17.11	Компараторы массы	(0,001500) г (0,15) кг	U _{0.95} =0,04 мг СКО 0,02 мг U _{0.95} =0,6 мг СКО 0,5 мг	МК-03.20.20 «Компараторы массы МСМ. Методика калибровки»»
17.12	Компараторы массы	1000 кг 2300 г	U _{0.95} =17000 мг СКО 5,6 г U _{0.95} =0,53 мг СКО 0,1 мг	МК-03.19.20 «Компараторы массы ХРЕ. Методика калибровки» МК-03.20.20 «Компараторы массы МСМ. Методика калибровки»
17.13	Компараторы массы	(0,0012,0) г (252) г	U _{0.95} =0,0116 мг СКО 0,0006 мг U _{0.95} =0,0116 мг СКО 0,0026 мг	МК-03.19.20 «Компараторы массы ХРЕ. Ме- тодика калиб- ровки»
		(0,54,1) кг (4,141,0) кг	U _{0.95} =3,47 мг СКО 2 мг U _{0.95} =3,47 мг СКО 3 мг	МК-03.20.20 «Компараторы массы МСМ. Методика ка- либровки»
		500 кг	U _{0.95} = 9249 мг СКО 2,8 г	МК-03.05.19 «Компараторы
		2000 кг	U _{0.95} =34682 мг СКО 11 г	массы ВК. Методика калибровки»
17.14	Дозаторы весовые дискретного действия	от 0,5 до 3000 кг	U _{0.95} = 28 мг КТ (0,12,5)	МК-03.18.20 «Дозаторы весовые автоматические дискретного действия. Методика калибровки»
17.15	Дозаторы весовые непрерывного действия	от 0 до 30 т/ч	$U_{0.95} = 0.15 \%$ $KT (0.252.5)$ $\Pi\Gamma \pm (0.252) \%$	МК-03.18.20 «Дозаторы весовые автоматические дискретного действия. Методика калибровки»
17.16	Весы непрерывного действия конвейерные	от 3 до 450 т/ч	U _{0.95} = 0,3 % KT (0,252,5)	МК-03.33.21 «Весы непре-

17.17			T		1
Переводила Пе				$\Pi\Gamma \pm (0,52)$ %	_
17.17					<u>-</u>
17.17					
11-1-2009 11-1-2009 11-1-2009 11-1-2009 10 мг 10					калибровки»
1.1.1.1.2009 Приложение С 1.1.1.1.2009 Приложение С 1.1.1.1.2009 Приложение С 1.1.1.1.2009 Приложение С 1.1.1.2009 Приложение С 1.1.2009 Прил	17.17	Гири	1 мг	U _{0.95} =0,0004 мг	ΓΟCT OIML R
5 мг		1		·	
10 мг				·	
20 мг					1
50 мг				·	
100 мг 200 мг 100 мг 200 мг 100 мг				-	
200 мг U 0.95 = 0.001 мг U 0.95 = 0.002 мг U 0.95 = 0.003 мг U 0.95 = 0.003 мг U 0.95 = 0.007 мг U 0.95 = 0.008				·	
17.18					
1 г					
17.18					
10 г				-	
10 г				*	
20 г				-	
100 г				-	
100 г				-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				•	
				-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				-	
$ \begin{array}{c} 2 \ \text{Kr} \\ 5 \ \text{Kr} \\ \end{array} \\ \begin{array}{c} 10 \ \text{Kr} \\ \end{array} \\ \begin{array}{c} 10 \ \text{Kr} \\ 20 \ \text{Kr} \\ \end{array} \\ \begin{array}{c} 10 \ \text{Kr} \\ 20 \ \text{Kr} \\ \end{array} \\ \begin{array}{c} 10 \ \text{Kr} \\ 20 \ \text{Kr} \\ \end{array} \\ \begin{array}{c} 10 \ \text{Kr} \\ 2000 \ \text{Kr} \\ \end{array} \\ \begin{array}{c} 10 \ \text{Kr} \\ 2000 \ \text{Kr} \\ \end{array} \\ \begin{array}{c} 10 \ \text{Kr} \\ 2000 \ \text{Kr} \\ \end{array} \\ \begin{array}{c} 10 \ \text{Kr} \\ 2000 \ \text{Kr} \\ \end{array} \\ \begin{array}{c} 10 \ \text{Kr} \\ 2000 \ \text{Kr} \\ \end{array} \\ \begin{array}{c} 10 \ \text{Kr} \\ 2000 \ \text{Kr} \\ \end{array} \\ \begin{array}{c} 10 \ \text{Kr} \\ 2000 \ \text{Kr} \\ \end{array} \\ \begin{array}{c} 10 \ \text{Kr} \\ \end{array} \\ \begin{array}{c} 10 \ \text{Kr} \\ 2000 \ \text{Kr} \\ \end{array} \\ \begin{array}{c} 10 \ \text{Kr} \\ \end{array} \\ \begin{array}{c} 11 \ \text{Kr} \ $				· ·	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				-	
10 кг				-	
			5 кг	-	
20 кг				M3	
17.18			10 кг	-	
17.18 Гири (1020) кг U 0.95 = 5,78 мг, KT E2 (1 разряд) ГОСТ ОІМL R 111-1-2009 Приложение С (1020) кг U 0.95 = 5,78 мг, KT F1(2 разряд) Приложение С (1·10-440) кг U 0.95 = 0,034 мг, KT M2, (5 разряд) Приложение С 500 кг U 0.95 = 9249 мг, КТ M2, (5 разряд) ГОСТ ОІМL В 111-1-2009 Приложение С 1 000 кг U 0.95 = 9,034 мг, КТ М2, (5 разряд) ГОСТ ОІМL В 111-1-2009 Приложение С 1 000 кг U 0.95 = 9249 мг, КТ М2, (5 разряд) ГОСТ ОІМL В 111-1-2009 Приложение С 1 000 кг U 0.95 = 34682 мг, КТ М2, (5 разряд) ГОСТ ОІМL В 111-1-2009 Приложение С 1 000 кг U 0.95 = 34682 мг, КТ М2, (5 разряд) ГОСТ ОІМL В 111-1-2009 Приложение С 1 000 кг U 0.95 = 34682 мг, КТ М2, (5 разряд) ГОСТ ОІМL В 111-1-2009 Приложение С 1 000 кг U 0.95 = 34682 мг, КТ М2, (5 разряд) ГОСТ ОІМ В 111-1-2009 Приложение С 1 000 кг U 0.95 = 34682 мг, КТ М2, (5 разряд) ГОСТ ОІМ В 111-1-2009 Приложение С 1 000 кг U 0.95 = 9249 мг, ГОСТ ОІМ В 111-1-2009 Приложение С			20 кг	U _{0.95} =9 мг	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				KT F2, M1, M2, M3	
Тири Тири Сост от			500 кг	U _{0.95} =225 мг	
17.18 Гири (1020) кг $U_{0.95} = 5,78 \text{ мг, KT E2 (1 разряд)}$ (1020) кг $U_{0.95} = 5,78 \text{ мг, KT F1(2 разряд)}$ (111-1-2009 Приложение С разряд) (1:10-440) кг $U_{0.95} = 0,034 \text{ мг, KT M2, (5 разряд)}$ 500 кг $U_{0.95} = 9249 \text{ мг, KT M2, (5 разряд)}$ 1000 кг $U_{0.95} = 18497 \text{ мг, KT M2, (5 разряд)}$ 2000 кг $U_{0.95} = 34682 \text{ мг, KT M2, (5 разряд)}$ 500 кг $U_{0.95} = 34682 \text{ мг, KT M2, (5 разряд)}$			2000 кг	U $_{0.95}$ =900 мг	
разряд) $(1020) \mathrm{K}\Gamma$ $U_{0.95} = 5.78 \mathrm{M}\Gamma, \mathrm{KT} \mathrm{F1}(2)$ $\mathrm{разряд})$ $\mathrm{Приложение} \mathrm{C}$ $(1 \cdot 10^{-4}40) \mathrm{K}\Gamma$ $U_{0.95} = 0.034 \mathrm{M}\Gamma, \mathrm{KT} \mathrm{M2}, (5)$ $\mathrm{разряд})$ $U_{0.95} = 9249 \mathrm{M}\Gamma, \mathrm{KT} \mathrm{M2}, (5)$ $\mathrm{разряд})$ $U_{0.95} = 18497 \mathrm{M}\Gamma, \mathrm{KT} \mathrm{M2}, (5)$ $\mathrm{разряд})$ $U_{0.95} = 34682 \mathrm{M}\Gamma, \mathrm{KT} \mathrm{M2}, (5)$ $\mathrm{разряд})$ $U_{0.95} = 34682 \mathrm{M}\Gamma, \mathrm{KT} \mathrm{M2}, (5)$ $\mathrm{pазряд})$ $U_{0.95} = 9249 \mathrm{M}\Gamma,$				KT M1	
разряд) $(1020) \mathrm{K}\Gamma$ $U_{0.95} = 5.78 \mathrm{M}\Gamma, \mathrm{KT} \mathrm{F1}(2)$ $\mathrm{разряд})$ $\mathrm{Приложение} \mathrm{C}$ $(1 \cdot 10^{-4}40) \mathrm{K}\Gamma$ $U_{0.95} = 0.034 \mathrm{M}\Gamma, \mathrm{KT} \mathrm{M2}, (5)$ $\mathrm{разряд})$ $U_{0.95} = 9249 \mathrm{M}\Gamma, \mathrm{KT} \mathrm{M2}, (5)$ $\mathrm{разряд})$ $U_{0.95} = 18497 \mathrm{M}\Gamma, \mathrm{KT} \mathrm{M2}, (5)$ $\mathrm{разряд})$ $U_{0.95} = 34682 \mathrm{M}\Gamma, \mathrm{KT} \mathrm{M2}, (5)$ $\mathrm{разряд})$ $U_{0.95} = 34682 \mathrm{M}\Gamma, \mathrm{KT} \mathrm{M2}, (5)$ $\mathrm{pазряд})$ $U_{0.95} = 9249 \mathrm{M}\Gamma,$	17 18	Гипи	(10 20) KT	U 0 05 = 5 78 MF KT E2 (1	FOCT OIML R
(1020) кг $U_{0.95} = 5,78$ мг, КТ F1(2 разряд) $U_{0.95} = 0,034$ мг, КТ M2, (5 разряд) $U_{0.95} = 9249$ мг, КТ M2, (5 разряд) $U_{0.95} = 18497$ мг, КТ M2, (5 разряд) $U_{0.95} = 18497$ мг, КТ M2, (5 разряд) $U_{0.95} = 34682$ мг, КТ M2, (5 разряд) $U_{0.95} = 34682$ мг, КТ M2, (5 разряд) $U_{0.95} = 9249$ мг,	17.10	прп	(1020) Ki		111-1-2009
$(1\cdot10^{-4}40)\ \mathrm{K}\Gamma$ $U_{0.95}=0{,}034\ \mathrm{M}\Gamma,\ \mathrm{KT}\ \mathrm{M2},\ (5\ \mathrm{разряд})$ $U_{0.95}=9249\ \mathrm{M}\Gamma,\ \mathrm{KT}\ \mathrm{M2},\ (5\ \mathrm{разряд})$ $U_{0.95}=18497\ \mathrm{M}\Gamma,\ \mathrm{KT}\ \mathrm{M2},\ (5\ \mathrm{разряд})$ $U_{0.95}=34682\ \mathrm{M}\Gamma,\ \mathrm{KT}\ \mathrm{M2},\ (5\ \mathrm{разряд})$ $U_{0.95}=34682\ \mathrm{M}\Gamma,\ \mathrm{KT}\ \mathrm{M2},\ (5\ \mathrm{разряд})$ $U_{0.95}=9249\ \mathrm{M}\Gamma,$			(1020) кг	· · · · · · · · · · · · · · · · · · ·	Приложение С
разряд)				разряд)	
разряд) $1000 \text{ кг} \qquad U_{0.95} = 18497 \text{ мг, КТ M2, (5 разряд)}$ $2000 \text{ кг} \qquad U_{0.95} = 34682 \text{ мг, КТ M2, (5 разряд)}$ $500 \text{ кг} \qquad U_{0.95} = 9249 \text{ мг,}$			(1·10-440) кг		
разряд) $U_{0.95} = 34682 \text{ мг, KT M2, (5 разряд)}$ $U_{0.95} = 9249 \text{ мг,}$			500 кг	* .	
разряд) $U_{0.95} = 9249 \text{ мг},$			1000 кг		
			2000 кг		
			500 кг	-	

		(1·10-340) кг	U _{0.95} =1,16 мг, КТ М3	
		500 кг	U _{0.95} = 9249 мг, КТ М3	
		1000 кг	$U_{0.95} = 18497 \text{ M}\text{G}, \text{KT M}3$	
		2000 кг	$U_{0.95} = 34682 \text{ MF}, \text{ KT M3}$	
18	Средства измерений си	TIT		
18.1	Динамометры образ-	от 1 до 1·10 ³ Н	U _{0.95} =0,02 %	ГОСТ Р 55223-
	цовые переносные	1·10³ до 5·10⁵ Н	$\Pi\Gamma \pm (0,10,5) \%$ $U_{0.95} = 0,01 \%$ $\Pi\Gamma \pm (0,10,5) \%$	2012 Раздел 6
18.2	Динамометры элек- тронные, механиче-	от 0,01 до 1·10 ³ Н	$U_{0.95} = 0.02 \%$ $\Pi\Gamma \pm (0.060.45) \%$	ГОСТ Р 55223- 2012 Раздел 6
	ские	от 1·10 ³ до 5·10 ⁵ Н	$U_{0.95} = 0.01 \%$ $\Pi\Gamma \pm (0.060.45) \%$	
18.3	Датчики сило- и весоизмерительные тензометрические	от 1 до 1·10 ³ H от 1·10 ³ до 5·10 ⁵ H	$U_{0.95} = 0,0060 \%$ $\Pi\Gamma \pm (0,062,50) \%$ $KT C; C1; C2; C3; C4;$ $C5; C6; D; D 0,1; D 0,2; D$ $0,4; D1$ $KT (0,020,25)$ $U_{0.95} = 0,0060 \%$ $\Pi\Gamma \pm (0,062,50) \%$ $KT C; C1; C2; C3; C4;$ $C5; C6; D; D 0,1; D 0,2; D$ $0,4; D1$ $KT (0,020,25)$	метрические. Методика ка- либровки»
18.4	Датчики силоизмери- тельные	от 0,01 до 1·10 ³ Н от 1·10 ³ до 5·10 ⁵ Н	$U_{0.95} = 0.02 \%$ $\Pi\Gamma \pm (0.060.5) \%$ $U_{0.95} = 0.01 \%$ $\Pi\Gamma \pm (0.060.5) \%$	МК-03.12.20 «Датчики сило- и весоизмерительные тензометрические. Методика калибровки»
18.5	Динамометры пру- жинные общего назна-	от 0,01 до 1·10 ³ Н	$U_{0.95} = 0,0060 \%$ $\Pi\Gamma \pm (0,52) \%$	ГОСТ Р 55223- 2012 Раздел 6
	чения	от 1·10 ³ до 2·10 ⁵ Н	$U_{0.95} = 0,0060 \%$ $\Pi\Gamma \pm (0,52) \%$	
18.6	Динамометры медицинские электронные ручные	от 2 до 120 даН	$U_{0.95} = 0,14 \%$ $\Pi\Gamma \pm 2,5 \%$	МК-03.36.21 «Динамометры кистевые. Методика калибровки»
18.7	Динамометры становые	от 20 до 500 даН	$U_{0.95} = 0.14 \%$ $\Pi\Gamma \pm 3 \%$	МК-03.37.21 «Динамометры становые. Мето-

				дика калибров-
				ки»
18.8	Динамометры кистевые	от 3 до 140 даН	$U_{0.95}=~0,14~\%$ ПГ $\pm~(0,754)$ даН	МК-03.36.21 «Динамометры кистевые. Методика калибровки»
18.9	Динамометры кистевые медицинские электронные	от 2 до 3 даН	$U_{0.95} = 0.14 \%$ $\Pi\Gamma \pm 2.5 \%$	МК-03.36.21 «Динамометры кистевые. Методика калибровки»
18.10	Граммометры	от 0,05 до 10000 гс	$U_{0,95} = 0,037 \; \mathrm{M}\Gamma$ $\Pi\Gamma \pm 4 \; \%$	МК-03.07.20 «Граммометры. Методика калибровки»
18.11	Машины разрывные испытательные и универсальные	от 0,02 до 1·10 ⁶ Н от 1·10 ⁶ до 2·10 ⁶ Н	$U_{0.95} = 0.14 \%$ $\Pi\Gamma \pm (0.52) \%$ $U_{0.95} = 0.14 \%$ $\Pi\Gamma \pm (0.52) \%$	МК-03.08.20 «Машины разрывные испытательные и универсальные. Методика калибровки»
18.12	Машины для испы- таний на сжатие	от 10 до 1·10 ⁶ Н от 1·10 ⁶ до 2·10 ⁶ Н	$U_{0.95} = 0.07 \%$ $\Pi\Gamma \pm (0.52,0) \%$ $U_{0.95} = 0.14 \%$ $\Pi\Gamma \pm (0.52,0) \%$	МК-03.09.20 «Машины для испытаний на сжатие. Методика калибровки»
18.13	Машины силовоспро- изводящие	от 10 до 1000 кН	$U_{0.95}$ =0,00046 % $\Pi\Gamma \pm (0,010,15)$ %	МК-03.13.20 «Машины силовоспроизводящие. Методика калибровки»
18.14	Прессы гидравлические для испытаний строительных материалов	от $2 \cdot 10^2$ до $1 \cdot 10^6$ Н от $1 \cdot 10^6$ до $2 \cdot 10^6$ Н	$U_{0.95} = 0.14 \%$ $\Pi\Gamma \pm (0.53) \%$ $U_{0.95} = 0.14 \%$ $\Pi\Gamma \pm (0.53) \%$	МК-03.10.20 «Прессы гид- равлические для испытаний строительных материалов. Методика калибровки»
18.15	Копры маятниковые	от 5 до 2500 Дж	$U_{0,95} = 0,0011~\%$ ПГ \pm (0,05 25,00) Дж	МК-03.23.20 «Копры маятниковые. Методика калибровки»
19	Средства измерений к	рутящего момента си.	лы	

19.1	Установки для поверки датчиков крутящего момента	от 0,05 до 5000 Н·м	$U_{0.95} = 0,0027 \text{ мм}$ $U_{0.95} = 4,6 \text{ мг}$ $\Pi\Gamma \pm (0,020,04) \%$ 1 разряд	МК-05.141.19 «Установки для поверки датчиков крутящего момента. Методика калибровки»
19.2	Измерители и датчики крутящего момента силы	от 0,05 до 0,5 Н·м от 0,5 до1500 Н·м св 1500 до 5000 Н·м	$U_{0.95} = 0,047\%$ $U_{0.95} = 0,023 \%$ $U_{0.95} = 0,047\%$ $\Pi\Gamma \pm (0,11,0) \%$ 2 разряд	МК-05.26.19 «Измерители и датчики крутящего момента силы. Методика калибровки»
19.3	Ключи моментные шкальные и предельные	от 0,04 до 3000 Н·м	$U_{0.95} = 0.29 \%$ $\Pi\Gamma \pm (18) \%$	МК-05.07.17 «Ключи мо- ментные. Мето- дика калибров- ки»
20	Средства измерений с			
20.1	Стенды, устройства, приборы для контроля и регулировки углов установки колес автомобилей	от - 5 до 15 мм ± 45°	$U_{0.95} = 35$ " $\Pi\Gamma \pm 0.5 \text{ mm} \\ \Pi\Gamma \pm (25)'$	МК-05.123.19 «Стенды, устройства, приборы для контроля и регулировки углов установки колес автомобилей. Методика калибровки»
20.2	Станки для балансировки колес автомобилей	от 0 до 2000 г от 0 до 360°	$U_{0.95} = 0,00083 \ \Gamma$ $\Pi\Gamma \pm (235) \ \Gamma$ $U_{0.95} = 2,3$ " $\Pi\Gamma \pm 6^{\circ}$	МК-05.120.19 «Станки для балансировки колес автомобилей. Методика калибровки»
20.3	Приборы для контроля схождения колес автомобилей	L от 1075 до 1855 мм L от 1050 до 1340 мм	$U_{0.95} = 0.23 \text{ mm}$ $\Pi\Gamma \pm 0.3 \text{ mm}$ $\Pi\Gamma \pm 0.5 \text{ mm}$	МК-05.96.19 «Приборы для контроля схождения колес автомобилей. Методика калибровки»
1 ZU.4	Люфтомеры	от 0 до 30°	$U_{0.95} = 17$ "	MK-05.53.19

		7,35; 9,8;	$\Pi\Gamma \pm 5 \%$	«Люфтомеры.
		12,3 H	$\Pi\Gamma\pm 8~\%$	Методика ка-
		от 0 до 120°	$\Pi\Gamma \pm (0,51)^{\circ}$	либровки»
20.5	Стенды и приборы для проверки тормозных систем автомобилей	от 0 до 150 000 Н от 0 до 18000 кг	U _{0.95} = 0,14 % ΠΓ ±(25) %	МК-05.122.19 «Стенды и приборы для проверки тормозных систем автомобилей. Методика калибровки»
21	Тахометры, спидомет	ры, таксометры		
21.1	Тахометры	от 10 до 60000 об/мин	$U_{0.95} = 0.058 \%$ $\Pi\Gamma \pm (0.154) \%$	МК-03.38.21 «Тахометры. Методика ка- либровки»
21.2	Тахометры электрон-	от 10	$U_{0.95} = 0,058 \%$	MK-03.26.20
	ные	до 60000 об/мин	$\Pi\Gamma \pm (0,110)$ об/мин	«Тахометры электронные. Методика ка- либровки»
21.3	Спидометры автомо-	от 20 до 220 км/ч	$U_{0.95} = 0.058 \%$	MK-03.39.21
	бильные		$\Pi\Gamma\pm(412)$ км/ч	«Спидометры автомобильные. Методика калибровки»
21.4	Счетчики оборотов	(9999,999999) обо- ротов	U _{0.95} = 0,058 %	МК-03.40.21 «Счетчики обо-
		Posso	$\Pi\Gamma\pm0,5~\%$	ротов. Методика калибровки»
21.5	Тахографы автомо-	от 20 до 220 км/ч	$U_{0.95} = 1,2 \cdot 10^{-7}$	MK-07.20.20
	бильные		$\Pi\Gamma \pm (13)$ км/ч	«Тахографы ав- томобильные. Методика калиб- ровки»
21.6	Приборы для поверки тахографов	(199999) имп	$U_{0.95} = 1,2 \cdot 10^{-7}$ $\Pi\Gamma \pm 0,5 \%$	МК-07.21.20 «Приборы для поверки тахогра-
		(2500 25000) имп/км	$U_{0.95} = 1,2 \cdot 10^{-7}$ $\Pi\Gamma \pm 5 \%$	фов. Методика калибровки»
		(5200) км/ч	$U_{0.95} = 1,2 \cdot 10^{-7}$ $\Pi\Gamma \pm 0,2 \%$	
22	Средства измерений т	вердости по шкалам Б	ринелля	

22.1 Твердомеры Бринелля от 8 до 450 НВ U _{0.95} = 5,2 НВ ПГ ±(45) % «Твердоме Бринелля. М дика калиброме Бринелля дика калиброме Бринелля ди
23 Средства измерений твердости по шкалам Виккерса 23.1 Твердомеры Виккерса от 8 до 2000 HV U _{0.95} = 9,93 HV МК-03.43 ПГ± (35) % «Твердоме Виккерса. М Виккерса. М
Дика калибро дика калибро 23.1 Твердомеры Виккерса от 8 до 2000 HV $U_{0.95} = 9,93 \text{ HV}$ МК-03.43 ПГ \pm (35) % МК-03.43 Виккерса. М
23 Средства измерений твердости по шкалам Виккерса 23.1 Твердомеры Виккерса от 8 до 2000 HV U _{0.95} = 9,93 HV МК-03.43 ПГ± (35) % «Твердоме Виккерса. М
23.1 Твердомеры Виккерса от 8 до 2000 HV $U_{0.95} = 9,93$ HV $\Pi\Gamma \pm (35)$ % $MK-03.43$ «Твердоме Виккерса. М
23.1 Твердомеры Виккерса от 8 до 2000 HV $U_{0.95} = 9,93$ HV $\Pi\Gamma \pm (35)$ % $MK-03.43$ «Твердоме Виккерса. М
ПГ± (35) % «Твердоме Виккерса. М
Виккерса. М
Виккерса. М
лика калиб
КИ»
24 Средства измерений твердости по шкалам Роквелла и Супер-Роквелла
24.1 Твердомеры Роквелла (2067) HRC U _{0.95} = 0,92 HRC MK-03.44
$\Pi\Gamma \pm (12)$ ед. «Твердомеры Токвезый (20от) Тисе $\Pi\Gamma \pm (12)$ ед.
III ± (12) ед. Роквелла. М
(7093) HRA $U_{0.95} = 1,15$ HRA дика калиб
КИ»
$\Pi\Gamma \pm (12)$ ед.
II 150 IIDD
$(25100) \text{ HRB}$ $U_{0.95} = 1,50 \text{ HRB}$
$\Pi\Gamma \pm$
(12) ед.
24.2 Твердомеры Супер- от 20 до 94 HRN U _{0.95} = 1,39 HRN MK-03.45
$\frac{1}{2}$ Роквелла $\frac{1}{2}$ Роквелла $\frac{1}{2}$ $\frac{1}{$
Супер-Рокв
$U_{0.95} = 2,31 \text{ HRT}$ Методика
от 10 до 93 HRT $\Pi\Gamma \pm (23)$ ед. либровки
$\Pi = (23)$ ед.
24.3 Твердомеры универ- от 50 до 94 HRA U _{0.95} =0,347 HRA MK-03.14
сальные $\Pi\Gamma \pm 1,2~HRA$ «Твердоме
универсаль
от 20 до 100 HRB $U_{0.95} = 0,694$ HRB Методика
$\Pi\Gamma \pm (23) HRB$ либровки
20 70 HDC H 0 200 HDC
от 20 до 70 HRC $U_{0.95}$ =0,289 HRC $\Pi\Gamma$ ± (12) HRC
$\Pi = (12) \text{ HKC}$
от 10 до 650 НВ
$\Pi\Gamma \pm (1,524,0) \text{ HB}$
от 50 до 1500 HV
$\Pi\Gamma \pm (3142) \mathrm{HV}$
10 02 1107
от 10 до 93 HRT U _{0.95} =0,694 HRT
$\Pi\Gamma \pm (23) \text{ HRT}$
от 20 до 94 HRN
$00.95 = 0.947 \text{ HeV}$ $\Pi\Gamma \pm (12) \text{ HRN}$

24.4	Микротвердомеры	от 50 до 1500 HV	U _{0.95} =6,937 HV	MK-03.15.20
	1 1 1		$\Pi\Gamma \pm (3120) \text{ HV}$	«Микротвердо-
				меры. Методика
				калибровки»
24.5	Приборы для измере-	от 0 до 100 ед.	$U_{0.95} = 0.35 \text{ rc}$	MK-03.24.20
	ния твёрдости резины		$ΠΓ \pm 8$ $Γ$ c	«Приборы для
			$U_{0.95} = 0,00023 \text{ mm}$	измерения твёр-
			$\Pi\Gamma\pm0,\!04$ мм	дости по Шору.
			$\Pi\Gamma\pm 1$ ед.тв.	Методика ка- либровки»
				мк-03.51.21
				«Измерители
				твёрдости по
				Шору ТН210.
				Методика ка-
24.6		0 (50 HP		либровки»
24.6	Приборы для измере-	от 8 до 650 НВ	$U_{0.95} = 5.2 \text{ HB}$	MK-03.46.21
	ния твёрдости порта- тивные		$\Pi\Gamma \pm (1020)$ ед.тв.	«Приборы для измерения твёр-
	тивныс			дости портатив-
		от 8 до 2000 HV	$U_{0.95} = 9,93 \text{ HV}$	ные. Методика
		от о до 2000 тт	$\Pi\Gamma \pm (1525)$ ед.тв.	калибровки»
			$U_{0.95} = 0.92 \text{ HRC}$	
		от 20 до 70 HRC		
			$\Pi\Gamma \pm (13)$ ед.тв.	
		от 25 до 100 HRB	$U_{0.95} = 1,50 \text{ HRB}$	
		от 20 до 94 HRN	$U_{0.95} = 1,39 \text{ HRN}$	
			$\Pi\Gamma \pm 4$ ед.тв.	
			тт = тод.ть.	
		10 02 HDT	$U_{0.95} = 1,62 \text{ HRT}$	
		от 10 до 93 HRT	$U_{0.95} = 1,85 \text{ HSD}$	
		от 0 до 102 HSD	$\Pi\Gamma \pm (13,5)$ ед.тв.	
24.7	Твердомеры для сухих	от 12,753	$U_{0.95} = 0.14 \%$	MK-03.47.21
	и сырых форм и	до 19,620 Н	$\Pi\Gamma \pm (35)\%$	«Твердомеры
	стержней	от 4,316 до 9,810 Н	` ,	для сухих и сы-
				рых форм и
				стержней. Мето- дика калибров-
				дика калиоров- ки»
24.8	Приборы для опреде-	от 0 до 999 колебаний	$U_{0.95} = 0.0011 \%$	MK-03.48.21
	ления твердости лако-	от 50 до 250 усл. ед.	$\Pi\Gamma \pm 1$ колебание	«Приборы для
	красочных покрытий	j	$\Pi\Gamma \pm (2,525)$ усл. ед.	определения
		от 0 до 1000 мм		твердости лако-
			$U_{0.95} = 0.058 \text{ MM}$	красочных по-
			$\Pi\Gamma \pm (0,20,5)$ mm	крытий. Мето- дика калибров-
				дика калиоров- ки»
25	Спедства изменеций с	истемы автосервиса п	noure	KII//
	оредетва измерении с	нетемы автисервиса п	po inc	

05.1	ПС	0 40	11 020	MIC 05 101 10
25.1	Приборы для проверки	от 0 до 4°	$U_{0.95} = 9.2 \%$ $\Pi\Gamma \pm 0.1 \%$	МК-05.101.19
	регулировки света фар		$\Pi\Gamma \pm 0.1\%$ $\Pi\Gamma \pm (520)'$	«Приборы для проверки регу-
		от 0 до 150 000 кд	$U_{0.95} = 9.2 \%$	лироверки регу-
		01 0 до 130 000 кд	$\Pi\Gamma \pm 1015\%$	фар. Методика
		от 0,5 до 3,5 Гц	$U_{0.95} = 9.2 \%$	калибровки»
		01 0,5 до 5,5 1 ц	$0.95 - 9.2\%$ ПГ ± 0.1 Гц	калпоровки
		от 30 до 75 %	$U_{0.95} = 9.2 \%$	
		01 30 до 73 70	$\Pi\Gamma \pm 15\%$	
			111 = 13 /0	
		от 0,1 до 2,5 с	$U_{0.95} = 9.2 \%$	
		01 0,1 до 2,5 0	$\Pi\Gamma \pm 0.2 \text{ c}$	
			3,2 3	
		от 250 до 1600 мм	$U_{0.95} = 9.2 \%$	
			$\Pi\Gamma \pm 3\%$	
25.2	Комплексы аппаратно-	от 5 до 220 км/ч	$U_{0.95} = 1,2 \text{ MM}$	MK-05.40.19
	программные		$\Pi\Gamma \pm (510) \%$	«Комплексы ап-
				паратно-
				программные.
				Методика ка-
				либровки»
25.3	Устройства для изме-	длина 6000 мм	U _{0.95} = 1,2 мкм	MK-05.142.19
23.3	рений координат кон-	ширина	$\Pi\Gamma\pm 1 \text{ MM}$	«Устройства для
	трольных точек кузова	3000 мм	111 — 1 MM	измерений ко-
	автомобиля	высота 500 мм		ординат кон-
				трольных точек
				кузова автомо-
				биля.
				Методика ка-
				либровки»
25.4	Прибори инд наорожи	от 40 до 100 Н	U _{0.95} = 0,14 %	MK-05.100.19
23.4	Приборы для проверки натяжения ремней	от 40 до 100 н	0.95 = 0.14 % $\Pi\Gamma \pm 5 \%$	МК-05.100.19«Приборы для
	натяжения ремнеи		111 ± 3 /0	проверки натя-
				жения ремней.
				Методика ка-
				либровки»
25.5	Установки и стенды	±120°	$U_{0.95} = 2,1$ "	MK-05.180.20
	угломерные для по-		3 разряд	«Установки и
	верки люфтомеров		$\Pi\Gamma \pm 5$	стенды угло-
				мерные для по-
				верки люфтоме-
				ров. Методика
				калибровки»
2 -	-	NAT.		
26	Прочие механические С	СИ		

26.1	Приборы для определения твердости лакокрасочных покрытий	от 0 до 999 колебаний от 50 до 250 усл. ед. от 0 до 1000 мм	$\Pi\Gamma\pm1$ колебание $\Pi\Gamma\pm(2,525)$ усл. ед. $U_{0.95}=0,058 \text{ мм}$ $\Pi\Gamma\pm(0,20,5)$ мм	МК-05.176.20 «Приборы для определения твердости лакокрасочных покрытий. Методика калибровки»
26.2	Приборы для измерения прочности бетона	от 2 до 50 кН от 3 до 100 МПа	$U_{0.95} = 0.14 \%$ $\Pi\Gamma \pm (210) \%$	МК-03.49.21 «Приборы для измерения прочности бетона. Методика калибровки» МК-05.159.19 «Измерители прочности бетона (склерометр). Методика калибровки»
26.3	Измерители прочности гранул	от 2 до 1000 Н	$U_{0,95}$ = 0,05 мг ПГ \pm 1 %	МК-03.16.20 «Измерители прочности гранул. Методика калибровки»
26.4	Адгезиметры	(0,02100) кг (01500) Н (070) МПа	$U_{0.95} = 0,004 \%$ $\Pi\Gamma \pm (0,01 \cdot N + 0,01)$ где $N-$ показания адгезиметра (min, max и среднеинтегральное) $\Pi\Gamma \pm (13) \%$	МК-03.41.21 «Адгезиметры. Методика ка- либровки»
26.5	Пурки	1 л	$U_{0,95}$ = 2,3 г ПГ \pm 4 г	МК-03.03.18 «Пурки литро- вые. Методика калибровки»
26.6	Гравиметрические ди- лютеры	от 2 до 2500 г	$U_{0,95} = 0,03 \ \text{M}\Gamma$ $\Pi\Gamma \pm 1 \ \%$ $\Pi\Gamma \pm (0,10,3) \ \Gamma$	МК-03.22.20 «Гравиметриче- ские дилютеры. Методика ка- либровки»
26.7	Пенетрометры грун- товые	от 100 до 950 Н	$\begin{array}{c} U_{0.95} = \!\! 0.07~\% \\ U_{0.95} = \!\! 0.003~H \\ U_{0.95} = \!\! 0.001~\text{mm} \\ \Pi\Gamma \pm (1,01,\!5)~\% \\ \Pi\Gamma \pm 0.1~\text{mm} \end{array}$	МК-03.17.20 «Пенетрометры грунтовые. Методика калибровки»

ИЗМ	ЕРЕНИЯ ПАРАМЕТРО	В ПОТОКА, РАСХОД	да, УРОВНЯ, ОБЪЕМА	ВЕЩЕСТВ
27	Средства измерений с	бъемного расхода жид	кости	
27.1	Счетчики жидкости, расходомеры, преобразователи расхода ультразвуковые (имитационный метод)	от 1 до 5000 м ³ /ч Ду от 50 до 500 мм	$U_{0.95} = 0.0046 \%$ $\Pi\Gamma \pm (13) \%$	МК-07.08.20 «Счетчики жид-кости, расходомеры, преобразо-ватели расхода ультразвуковые (имитационный метод). Методика калибровки»
27.2	Расходомеры, преобразователи расхода жидкости	от 0,016 до 300 м ³ /ч	U _{0.95} =0,058 % ΠΓ ±(0,155) %	МК-06.25.21 «Расходомеры, преобразователи расхода жидкости. Методика калибровки»
27.3	Счетчики жидкости	от 0,016 до 300 м ³ /ч	U _{0.95} =0,058 % ΠΓ ±(0,155) %	МК-06.05.16 «Счетчики жид- кости. Методика ка- либровки»
27.4	Счетчики воды	(0,02300) м ³ /ч	U _{0.95} = 0,38 % ΠΓ± (15) %	МК-06.32.21 «Счетчики воды. Методика ка- либровки» МК-07.09.20 «Счетчики воды. Методика ка- либровки»
27.5	Счетчики жидкости, расходомеры, преобразователи расхода	от 0,03 до 300 м ³ /ч от 2 до 360000 кг/ч	U _{0.95} =0,06 % ΠΓ ±(0,155) %	МК-07.05.19 «Счетчики, расходомеры, преобразователи расхода жидкости. Методика калибровки»
27.6	Установки для поверки расходомеров и счетчиков воды	(0,02300) м ³ /ч (2360000) кг/ч	$U_{0.95} = 0.033 \%$ $\Pi\Gamma \pm (0.050.5) \%$	МК-06.41.21 «Установки для поверки расходомеров и счетчиков воды. Методика калибровки» МК-07.10.20 «Установки для

				поверки расхо-домеров, счет-
				чиков воды. Ме-
				тодика калиб-
				ровки»
				MK-07.11.20
				«Установки для
				поверки расхо-
				домеров и счет-
				чиков воды. Ме-
				тодика калиб-
				ровки»
				ровки
27.7	Установки для повер-	$(0,016300) \text{ m}^3/\text{q}$	U _{0.95} = 0,033 %	MK-06.41.21
	ки расходомеров и	(2360000) кг/ч	$\Pi\Gamma \pm (0,050,5)$ %	«Установки для
	счетчиков воды			поверки расхо-
				домеров и счет-
				чиков воды.
				Методика ка-
				либровки»
				MK-07.10.20
				«Установки для
				поверки расхо-
				домеров, счет-
				чиков воды. Ме-
				тодика калиб-
				ровки»
				MK-07.11.20
				«Установки для
				поверки расхо-
				домеров и счет-
				чиков воды. Ме-
				тодика калиб-
				ровки»
27.8	Счетчики-	от 0,0025	$U_{0.95} = 0.058 \%$	MK-07.05.19
	расходомеры	до 10000 м ³ /ч	$\Pi\Gamma \pm (0,163)\%$	«Счетчики-
	1	70000 111 / 1	(0,20) / 0	расходомеры.
		от 0,002 до 2200 кг/с	$U_{0.95} = 0.046 \%$	Методика калиб-
			$\Pi\Gamma \pm (0,151) \%$	роки»
		от 0 до 5000 кг/м^3	$U_{0.95} = 0.012\%$	
			$\Pi\Gamma \pm (0,520)$ kγ/m ³	
		от -200 до 350 °C	$U_{0.95} = 0.06 ^{\circ}\text{C}$	
			$\Pi\Gamma \pm (0,52,5) {}^{\circ}\mathrm{C}$	
27.9	Системы измерительнь	от 0,017 до 90 л/с	$U_{0.95} = 0.12 \%$	MK-06.26.21
	спиртосодержащих	от 0,1до 320 т/ч	$\Pi\Gamma \pm 0,4\%$	«Системы изме-
	жидкостей	от 3 до 99 % об.	$U_{0.95} = 0.012 \%$	рительные спир-
			$\Pi\Gamma\pm0,2~\%$	тосодержащих
		от -50 до 80 °C	$U_{0.95} = 0.06 ^{\circ}\text{C}$	жидкостей. Си-
			$\Pi\Gamma \pm 0.5$ °C	стемы измери-
				тельные спирто-
				содержащих
				жидкостей. Ме-

				тодика калибров- ки»
28	Спедства изменений и	опинества миниссти п	ри поступлении, хранен	ии и отпуске
28.1	Колонки топливораздаточные	от 25 до 160 дм ³ /мин	$U_{0.95} = 0.12 \%$ $\Pi\Gamma \pm (0.251.00) \%$	МК-06.27.21 «Колонки топливораздаточные. Колонки маслораздаточные. Колонки раздаточные сжиженного газа. Методика калибровки»
28.2	Колонки маслораздаточные	от 4 до 8 дм ³ /мин	$U_{0.95} = 0,006 \%$ $\Pi\Gamma \pm (0,51,0) \%$	МК-06.27.21 «Колонки топливораздаточные. Колонки маслораздаточные. Колонки раздаточные сжиженного газа. Методика калибровки»
28.3	Колонки газоразда- точные	(580) дм ³ /мин	$U_{0.95} = 0.12 \%$ $\Pi\Gamma \pm (0.51.5) \%$	МК-06.27.21 «Колонки топливораздаточные. Колонки маслораздаточные. Колонки раздаточные сжиженного газа. Методика калибровки»
29	Средства измерений об	ъема		
29.1	Меры вместимости стеклянные	от 0,01 до 210 мл от 210 до 4100 мл от 4100 до 10000 мл	$U_{0.95}=0{,}00006$ мл $U_{0.95}=0{,}0012$ мл $U_{0.95}=0{,}0016$ мл KT 1, KT 2 ПГ \pm (0,055) %	МК-06.06.17 «Бюретка образцовая. Методика калибровки» МК-06.07.17 «Цилиндр пластиковый лабораторный. Методика калибровки»
29.2	Дозаторы пипеточные, шприцы, микрошприць	от 1 до 50000 мкл	$U_{0.95} = 0{,}006$ мкл ПГ $\pm (10{,}00{,}3)$ %	МК-11.01.16 «Дозаторы пи- петочные. Ме-

				тодика калибровки» МК-11.01.20 «Дозаторы пипеточные, шприцы, микрошприцы. Методика калибровки»
29.3	Мерники	от 2 до 4 дм ³ от 4 до 500 дм ³	$U_{0.95} = 0{,}0012 \text{ мл}$ $U_{0.95} = 0{,}0016 \text{ мл}$ $\Pi\Gamma \pm 0{,}02 \%$	МК-06.33.21 «Мерники. Методика ка- либровки»
29.4	Мерники	от 2 до 2000 дм ³	$U_{0.95} = 0.023 \%$ $\Pi\Gamma \pm (0.050,1) \%$	МК-06.20.21 «Мерники. Методика ка- либровки»
29.5	Мерники технические	от 10 до 100000 дм ³	$U_{0.95} = 0.023 \%$ $\Pi\Gamma \pm (0,20,5) \%$	МК-06.20.21 «Мерники. Методика ка- либровки»
29.6	Автоцистерны	$(1,550) \text{ M}^3$	$U_{0.95} = 0.023 \%$ $\Pi\Gamma \pm (0,20,5) \%$	МК-06.40.21 «Цистерны автомобильные. Методика калибровки»
29.7	Резервуары стальные вертикальные цилиндрические	(100100000) m ³	U _{0.95} = 0,12 % ΠΓ± (0,040,2) %	МК-06.34.21 «Резервуары стальные вертикальные цилиндрические. Методика калибровка»
29.8	Резервуары стальные горизонтальные цилиндрические	от 3 до 200 м ³	U _{0.95} = 0,18 % ΠΓ± (0,10,25) %	МК-06.35.21 «Резервуары стальные горизонтальные цилиндрические. Методика калибровка»
29.9	Резервуары стальные сферические Средства измерения о	от 100 до 100000 м ³	U _{0.95} = 0,012 % ΠΓ± (0,011,00) %	МК-06.36.21 «Резервуары стальные сфери- ческие. Методика калиб- ровка»

20.1		0.002 65 3/	11 0.25 0/	NUC 06 17 00
30.1	Счетчики газа	от $0,003$ до $65 \text{ м}^3/\text{ч}$	$U_{0.95} = 0.35 \%$	MK-06.17.20
			$\Pi\Gamma \pm (15)\%$	«Счетчики газа.
				Методика калиб-
				ровка»
30.2	Счетчики газа	от 0,5 до 6500 м ³ /ч	U _{0.95} = 0,35 %	MK-07.12.20
			$\Pi\Gamma \pm (15)$ %	«Преобразовате-
				ли, расходомеры,
				счетчики объем-
				ного расхода газа.
				Методика калиб-
				ровки»
30.3	Комплексы для изме-	от 0,5 до 6500 м ³ /ч	$U_{0.95} = 0.35 \%$	MK-07.13.20
	рения количества газа	,	$\Pi\Gamma \pm (15) \%$	«Комплексы для
	-			измерения коли-
				чества газа. Ме-
				тодика калибров-
				ки»
30.4	Корректоры, вычисли-	от 0,08 до 12 МПа	U _{0.95} = 0,0058 %	MK-07.14.20
20.1	тели расхода и объема	01 0,00 <u>д</u> 0 1 2 1/11 1	$\Pi\Gamma(P) \pm (0.050.4) \%$	«Корректоры,
	газа	от 0 до 10^3 к Π а	$U_{0.95} = 0,0058 \%$	вычислители рас-
			$\Pi\Gamma(\Delta P) \pm (0,10,15) \%$	хода газа. Мето-
		от –40 до 100 °C	$U_{0.95} = 0.023 ^{\circ}\text{C}$	дика калибровки»
		2.	$\Pi\Gamma(t) \pm (0,10,25)$ °C	
		от 0 до 999999 м ³ /ч	$U_{0.95} = 1.2 \cdot 10^{-7}$	
		20 50 MH / 3	$\Pi\Gamma(Q) \pm (0.02 \dots 5.2) \%$ $U_{0.95} = 0.0035 \%$	
		от 30 до 50 МДж/м ³	$\Pi\Gamma(h) \pm (0.050,1) \%$	
		от 0 до 99999999 м ³	$U_{0.95} = 1.2 \cdot 10^{-7}$	
		от о до ууууууу м	$\Pi\Gamma(V) \pm (0,20,5) \%$	
		200 21		
30.5	Системы измерения	от 4 до $200 \text{ м}^3/\text{c}$	$U_{0.95} = 0.023 \%$	MK-07.16.20
	объемного расхода га-	0 100 П	$\Pi\Gamma(Q) \pm (0.5-1) \%$	«Системы изме-
	3a	от 0 до 100 кПа	$U_{0.95} = 0.029 \%$	рения объемного
		от 0 до 6,0 МПа	$\Pi\Gamma \pm (0,020,2) \%$ $U_{0.95} = 0,058 \%$	расхода газа. Ме-
		01 0 до 0,0 МПа	$\Pi\Gamma \pm (0,020,2) \%$	тодика калибров»
		от -20 до 50 °C	$U_{0.95} = 0.06 ^{\circ}\text{C}$	
		or 20 A0 50 C	ПГ класса А, В, С	
30.6	Расходомеры газа	от 0,003 до 65 м ³ /ч	$U_{0.95} = 0.15 \%$	MK-06.03.16
	•			«Методика ка-
				либровки расхо-
				домеров газа»
30.7	Установки повероч-	от $0,003$ до $65 \text{ м}^3/\text{ч}$	$U_{0.95} = 0.25 \%$	MK-06.28.21
	ные для счетчиков газа		$\Pi\Gamma\pm(0,31,35)\%$	«Установки по-
	и преобразователей			верочные для
	расхода газа (объем-			счетчиков газа и
	ного расхода газа)			преобразовате-
				лей расхода газа (объемного рас-
				хода газа).
				лода газај.

				Установки поверочные для ротаметров. Методика калибровки»
30.8	Установки поверочные для счетчиков газа и преобразователей расхода газа (объемного расхода газа)	от 0,5 до 6500 м ³ /ч	U _{0.95} = 0,29 % ΠΓ± (0,31,35) %	МК-07.17.20 «Установки для поверки преобразователей, расходомеров, счетчиков объемного расхода газа. Методика калибровки»
30.9	Установки поверочные для ротаметров	от 0,003 до 65 м ³ /ч	$U_{0.95} = 0.35 \%$ $\Pi\Gamma \pm (0.31,35) \%$	МК-06.28.21 «Установки поверочные для счетчиков газа и преобразователей расхода газа (объемного расхода газа). Установки поверочные для ротаметров. Методика калибровки»
30.10	Ротаметры	от 0,003 до 65 м ³ /ч	$U_{0.95} = 0.35 \%$ $\Pi\Gamma \pm (1,010,0) \%$	МК-06.15.20 «Аспираторы. Ротаметры. Ме- тодика калиб- ровки»
30.11	Пробоотборники, аспираторы, пробоотборные устройства	от 0,003 до 65 м ³ /ч	$U_{0.95} = 0.35 \%$ $\Pi\Gamma \pm (1,010,0) \%$	МК-06.13.20 «Пробоотборники. Методика калибровки» МК-06.15.20 «Аспираторы. Ротаметры. Методика калибровки»
30.12	Приборы для измерения воздухопроницаемости	от 0,003 до 65 м ³ /ч	U _{0.95} = 0,35 % ΠΓ ±(1,010,0) %	МК-06.14.20 «Прибор для из- мерения возду- хопроницаемо- сти МТ160. Ме- тодика калиб-

31 31.1	Средства измерений с Приемники полного и	ж орости воздушного п от 1 до 60 м/с	отока $U_{0.95} = 1,14 \%$	ровки» МК-06.21.21 «Приборы для измерения воз- духопроницае- мости. Методика ка- либровки»
	статического давления		ПГ±(0,006+0,024V) м/с, где V – скорость воздушного потока, м/с	«Приемники полного и статического давления ППСД. Методика калибровки»
31.2	Стенды аэродинами- ческие	от 0,1 до 40 м/с	$U_{0.95} = 0.02 \text{ м/c}$ $\Pi\Gamma\pm(0.015+0.015\text{ V}) \text{ м/c},$ где $V-$ скорость воздушного потока, м/с	МК-06.29.21 «Стенды аэро- динамические. Методика ка- либровки»
31.3	Средства измерений скорости воздушного потока	от 0,05 до 60 м/с	$U_{0.95} = 1,14~\%$ ПГ $\pm (0,015+0,015 V)$ м/с, где V — скорость воздушного потока, м/с	МК-06.04.16 «Анемометры цифровые. Методика калибровки» МК-06.08.18 «Измерители комбинированные Testo-400, Testo-435-1, Testo-435-3, Testo-435-4, Testo-405i, Testo-425. Зонд с обогреваемой струной. Канал скорости воздушного потока. Методика калибровки.» МК-06.09.19 «Измерители комбинированные Testo-400, Testo-435-1, Testo-435-2, Testo-435-3, Testo-435-4, Testo-405i, Testo-425. Зонд с

	Т		T	
				обогреваемой
				струной.
				Канал скорости
				воздушного по-
				тока. Методика
				калибровки»
				MK-06.11.19
				«Измеритель
				комбинирован-
				ный Testo-425.
				Зонд с обогрева-
				емой струной.
				Канал скорости
				воздушного по-
				тока. Методи-
				ка калибровки»
				MK-06.12.20
				«Измеритель
				комбинирован-
				ный Testo-425.
				Измерение скоро-
				сти воздушного
				потока.
				Методика калиб-
				ровки»
				мк-06.16.20
				«Анемометры
				цифровые. Канал
				скорости воздуш-
				ного потока.
				Методика калиб-
				ровки» МК-06.18.20
				«Анемометры.
				Канал скорости
				воздушного по-
				тока. Методика
				калибровки»
				MK-06.22.21
				«Приемники пол-
				ного и статиче-
				ского давления
				ППСД. Методика
				калибровки»
31.4	Пиормосченометт	or 1.7 vo 2.5 v/s	$U_{0.95} = 0.02 \text{ m/c}$	MK-06.23.21
31.4	Пневмоанемометры ПО-30	от 1,7 до 3,5 м/с		«Пневмоанемо-
	110-30		ПГ ±0,1 м/с	
				метры ПО-30.
				Методика ка-
				либровки»
32	Средства измерений у	повна жилиости		
32.1	Уровнемеры буйковые	от 0,02 до 16 м	$U_{0.95} = 0.12 \text{ MM}$	MK-06.24.21
	S PODITOMOPHI O MINOPPIC	от 0,02 до 10 M	00.95 0,12 IVINI	1V11\-00.44.41

	пневматические		$\Pi\Gamma \pm (1,01,5) \%$	«Уровнемеры. Уровнемеры буйковые пневматические. Уровнемеры «Струна-М». Уровнемеры, системы измерительноуправляющие. Методика калибровки»
32.2	Уровнемеры	от 0 до 50000 мм от -200 до 400 °C от 710 до 1010 кг/м ³	$U_{0.95} = 1,16$ мкм $\Pi\Gamma \pm 1$ мм $U_{0.95} = 0,06$ °C $\Pi\Gamma \pm 1$ °C $U_{0.95} = 0,12$ кг/м ³ $\Pi\Gamma \pm 1,5$ кг/м ³	МК-06.24.21 «Уровнемеры. Уровнемеры буйковые пневматические. Уровнемеры «Струна-М». Уровнемеры, системы измерительноуправляющие. Методика калибровки»
32.3	Уровнемеры «Струна- М»	от 10 до 3800 мм от -40 до 55 °C от 710 до 1010 кг/м ³	$U_{0.95} = 1,16$ мкм $\Pi\Gamma \pm 1$ мм $U_{0.95} = 0,06$ °C $\Pi\Gamma \pm 1$ °C $U_{0.95} = 0,12$ кг/м ³ $\Pi\Gamma \pm 1,5$ кг/м ³	МК-06.24.21 «Уровнемеры. Уровнемеры буйковые пневматические. Уровнемеры «Струна-М». Уровнемеры, системы измерительноуправляющие. Методика калибровки»
32.4	Уровнемеры, системы измерительно- управляющие	от 0 до 100000 мм от -200 до 200 °C от 650 до 1500 кг/м ³ от 0,1 до 60 МПа	$U_{0.95} = 1,16 \text{ MKM}$ $\Pi\Gamma \pm (0,230) \text{ MM}$ $U_{0.95} = 0,06 \text{ °C}$ $\Pi\Gamma \pm (0,23) \text{ °C}$ $U_{0.95} = 0,12 \text{ KT/M}^3$ $\Pi\Gamma \pm (0,52,5) \text{ KT/M}^3$ $U_{0.95} = 0,12 \text{ %}$ $\Pi\Gamma \pm (0,10,7) \text{ %}$	МК-06.24.21 «Уровнемеры. Уровнемеры буйковые пневматические. Уровнемеры «Струна-М». Уровнемеры, системы измерительноуправляющие. Методика ка-

				либровки»
33	Прочие средства измер	ений параметров пото	 рка, расхода, уровня, объе	ма вешеств
33.1	Комплексы измерительные АСН	номинальный расход от 18 до 90 м ³ /ч	по объему - $U_{0.95} = 0.058 \%$ ПГ $\pm (0.150.5) \%$ по массе – $U_{0.95} = 0.46 \%$ ПГ $\pm (0.250.5) \%$	МК-06.31.21 «Комплексы измерительные АСН. Методика калибровки»
33.2	Комплексы градуировк резервуаров «Зонд»	от 100 до 250 дм ³ /мин от 10 до 4000 мм	$U_{0.95} = 0,023~\%$ $\Pi\Gamma \pm 0,15~\%$ $U_{0.95} = 1,16$ мкм $\Pi\Gamma \pm 1$ мм	МК-06.37.21 «Комплексы градуировки резервуаров «Зонд». Методика калибровки»
33.3	Установки поверочные средств измерений объема и массы УПМ	от 50 до 2000 дм ³ от 25 до 2000 кг	$U_{0.95} = 0.023~\%$ $\Pi\Gamma \pm 0.05~\%$ $U_{0.95} = 0.6~\text{m}\Gamma$ $\Pi\Gamma \pm 0.04~\%$	МК-06.30.21 «Установки поверочные средств измерений объема и массы УПМ. Методика калибровки»
33.4	Расходомерные ком- плексы переменного перепада давления	$d \le 0,0125 \text{ M}$ D (501000) мм $0,1 \le \beta \le 0,75$ (0,4160) кПа	$U_{0.95} = 1,16$ мкм $\Pi\Gamma \pm (24) \%$ $\Pi\Gamma \pm (0,252) \%$	МК-06.43.21 «Комплексы расходомерные переменного пе- репада давления. Методика ка- либровки»
33.5	Теплосчетчики, тепловычислители	от 0,03 до 300 м ³ /ч от 0 до 999999 м ³ /ч от 2 до 360000 кг/ч от -20 до 180 °C от 0,08 до 12 МПа от 0 до 10 ³ кПа от 30 до 50 МДж/м ³ от 3 до 150 °C	$\begin{array}{c} U_{0.95} = 0.06 \ \% \\ \Pi\Gamma(Q) \pm (0.022.5)\% \\ U_{0.95} = 1.2 \cdot 10^{-7} \\ \Pi\Gamma(Q) \pm (0.022.5)\% \\ U_{0.95} = 0.058 \ \% \\ \Pi\Gamma(Q) \pm (0.022.5)\% \\ U_{0.95} = 0.023 \ ^{\circ}\mathrm{C} \\ \Pi\Gamma(t) \ \ \text{Kfiace A,B,C} \\ U_{0.95} = 0.058 \ \% \\ \Pi\Gamma(P) \pm (0.050.1) \ \% \\ U_{0.95} = 0.0058 \ \% \\ \Pi\Gamma(\Delta P) \pm (0.10.15) \ \% \\ U_{0.95} = 0.0035 \ \% \\ \Pi\Gamma(h) \pm (0.050.1) \ \% \\ U_{0.95} = 0.033 \ ^{\circ}\mathrm{C} \\ \Pi\Gamma(\Delta t) \pm (0.251) \ ^{\circ}\mathrm{C} \end{array}$	МК-07.15.20 «Теплосчетчики, тепловычислители. Методика калибровки»
33.6	Установки расходо- мерные	от 3·10 ⁻⁵ до 12,5 м ³ /ч от 20 до 106 кПа от 10 до 300 дм ³	$U_{0.95} = 0,023 \%$ $\Pi\Gamma \pm 0,15 \%$ $U_{0.95} = 0,046 \%$	МК-06.42.21 «Установки расходомерные.

	I		ΠΓ± 0,01 %	Методика ка-
			$\Pi \pm 0,01$ 76 $\Pi\Gamma \pm 0,1$ дм ³	
			111 ± 0,1 дм	либровки»
33.7	Счетчики-	от 2 до 360000 кг/ч	$U_{0.95} = 0.06 \%$	MK-07.05.19
33.7		01 2 до 300000 кг/ч	$\Pi\Gamma \pm (0.151)\%$	«Счетчики-
	расходомеры (массо-		$111 \pm (0,131)$ 70	
	вый метод)			расходомеры
				(массовый ме-
				тод). Методика
				калибровки»
33.8	Системы измерения	от 5 до 999999,99 кг	$U_{0.95} = 23 \Gamma$	MK-06.38.21
33.0	массы заправляемого	01 3 до уууууу,уу кг	$\Pi\Gamma \pm (0,55)$ %	«Системы изме-
	сжатого газа		$111 \pm (0,33) 70$	рения массы за-
	Сжатого газа			правляемого
				сжатого газа.
				Методика ка-
				либровки»
				лиоровки//
33.9	Установки автомати-	от 0,003	$U_{0.95} = 0.1 \%$	MK-06.39.21
	зированные для ка-	до 16,000 м ³ /ч	· ·	«Установки ав-
	либровки СИ малых			томатизирован-
	расходов			ные для калиб-
				ровки СИ малых
				расходов. Мето-
				дика калибров-
				ки»
33.10	Средства измерения	от 0,003	$U_{0.95} = 0.13 \%$	MK-06.02.16
	малых расходов	до 16,000 м ³ /ч		«Средства изме-
				рения малых рас-
				ходов газа.
				Методика калиб-
TEON			DETINA	ровки»
34	ЕРЕНИЯ ДАВЛЕНИЯ,	ВАКУУМНЫЕ ИЗМЕ избыточного давления	Кинла	
34.1	Тягомеры	от 100 до 4000 Па	$U_{0.95} = 0.012 \%$	MK-01.11.19
34.1	ТЯГОМСРЫ	01 100 до 4000 11а	KT 1,5;	«Манометры, ва-
		от 100 до 40000 Па	$U_{0.95} = 0.023 \%$	куумметры, ма-
		01 100 до 40000 11а	KT 2,5	новакуумметры,
			K1 2,3	напоромеры, тя-
				гомеры, тягона-
				поромеры пока-
				зывающие. Мето-
				дика калибровки»
34.2	Тягонапоромеры,	от 100 до 4000 Па	$U_{0.95} = 0.012 \%$	МК-01.11.19
12	напоромеры		KT 1,5;	«Манометры, ва-
	1 -1	от 100 до 40000 Па	$U_{0.95} = 0.023 \%$	куумметры, ма-
		,,	KT 2,5	новакуумметры,
)*	напоромеры, тя-
				гомеры, тягона-
				поромеры пока-
				зывающие. Мето-
				дика калибровки»
<u> </u>	1	1		дана дангоровки

34.3	Преобразователи дав- ления	от - 0,1 до 60,0 МПа	$U_{0.95}=0.0058~\%$ Разряд 1,2,3,4 ПГ ± (0,022,50) % КТ (0,030,5)	МК-01.03.17 «Преобразовате- ли давления из- мерительные, ма-
			TCT (0,050,5)	нометры цифровые. Методика калибровки» МК-01.09.18 «Манометры цифровые, преобразова-тели давления измерительные с цифровым диспле-ем. Методика калибровки»
34.4	Манометры цифровые	от -0,1 до 60,0 МПа	$U_{0.95} = 0,0058~\%$ Разряд 1,2,3,4 ПГ ± (0,022,50) % КТ (0,030,1)	МК-01.03.17 «Преобразователи давления измерительные, манометры цифровые. Методика калибровки» МК-01.09.18 «Манометры цифровые, преобразова-тели давления измерительные с цифровым диспле-ем. Методика калибровки»
34.5	Каналы измерения избыточного давления	от - 0,1 до 60,0 МПа	$U_{0.95} = 0,0058~\%$ Разряд 1,2,3,4 ПГ \pm (0,022,50) %	МК-01.03.17 «Преобразователи давления измерительные, манометры цифровые. Методика калибровки» МК-01.09.18 «Манометры цифровые, преобразова-тели давления измерительные с цифровым диспле-ем. Методика калибровки»
34.6	Калибраторы давле- ния	от -0,1 до 60,0 МПа	$U_{0.95} = 0.0058 \%$ $\Pi\Gamma \pm (0.010.50) \%$	МК-01.45.20 «Калибраторы давле-

				,
			KT 0,02; KT 0,05; KT 0,1	ния, модули из- быточного давле- ния. Методика калибровки»
34.7	Модули избыточного давления	от -0,1 до 60,0 МПа	$U_{0.95} = 0,0058 \%$ $\Pi\Gamma \pm (0,010,50) \%$ $KT 0,02$	МК-01.45.20 «Калибраторы давления, модули избыточного давления. Методика калибровки»
34.8	Манометры диффе- ренциальные	от 0,4 до 160 кПа	U _{0.95} = 0,074 кПа КТ (0,252,5)	МК-06.19.20 «Манометры дифференциаль- ные. Методика калибровки»
34.9	Вакуумметры	от -0,06 до -0,1 МПа	U _{0.95} = 0,023 % KT (0,154)	МК-01.11.19 «Манометры, вакуумметры, мановакуумметры, напоромеры, тягонапоромеры поканоромеры показывающие. Методика калибровки»
34.10	Мановакуумметры	от -0,1 до 0,6 МПа	U _{0.95} = 0,023 % KT (0,154)	МК-01.11.19 «Манометры, вакуумметры, мановакуумметры, тапоромеры, тагоналоромеры показывающие. Методика калибровки»
34.11	Манометры	от 0 до 250 МПа	U _{0.95} = 0,023 % KT (0,154)	МК-01.11.19 «Манометры, вакуумметры, мановакуумметры, тапоромеры, тагоналоромеры показывающие. Методика калибровки»
34.12	Микроманометры	от 0 до 2500 Па	$U_{0.95} = 0.012 \%$ ПГ $\pm (0.052,40)$ Па	МК-01.47.20 «Микроманомет- ры. Методика ка- либровки»

34.13	Приборы для поверки дифманометров- расходомеров системы А.И. Петрова	от 1500 до 10000 Па	$U_{0.95} = 0.023 \%$ $\Pi\Gamma \pm 0.3 \%$	МК-01.97.21 «Приборы для поверки дифманометров- расходомеров си- стемы А.И. Пет- рова. Методика калибровки»
34.14	Измерители давления цифровые	от 0 до 200 кПа	$U_{0.95} = 0.023 \%$ $\Pi\Gamma \pm 0.2 \%$	МК-01.54.20 «Методика ка- либровки измери- телей давления цифровых»
34.15	Манометры грузо- поршневые избыточно- го давления	от -1 до 60 МПа	U _{0.95} = 0,0058 % KT (0,010,2)	МК-01.99.21 «Манометры грузопоршневые избыточного давления. Методика калибровки»
34.16	Мановакуумметры	от -0,1 до 0,25 МПа	U _{0.95} = 0,0058 % KT (0,010,2)	МК-01.100.21 «Методика ка- либровки мано- вакуумметров грузопоршневых»
34.17	Задатчики избыточного давления	от -0,063 до 60,0 МПа	$U_{0.95} = 0.0058 \%$ $\Pi\Gamma \pm (0.020,20) \%$ KT 0.05	МК-01.98.21 «Методика ка- либровки задат- чиков избыточно- го давления»
34.18	Измерители проницае- мости вакуумные	от -95,0 до 0,0 кПа	$U_{0.95} = 0.0058 \%$ ПГ $\pm 2.0 \ \kappa \Pi a$	МК-01.48.20 «Методика ка- либровки измери- телей проницае- мости вакуум- ных»
34.19	Манометры грузо- поршневые	от -0,1 до 60 МПа	U _{0.95} = 0,0058 % KT 0,015	МК-01.100.21 «Методика калибровки мановакуумметров грузопоршневых»
34.20	Задатчики давления	(0,00460) МПа	U _{0.95} = 0,023 % KT 0,05	МК-01.98.21 «Методика ка- либровки задат- чиков избыточно- го давления»

35	Средства измерения а	бсолютного давления		
35.1	Барометры мембран-	от 400 до 1090 гПа	$U_{0.95} = 0.012 \%$	MK-01.26.20
	ные		$\Pi\Gamma \pm (12)$ г Π а	«Методика ка-
			,	либровки баро-
				метров»
				1
35.2	Модули абсолютного	от 0 до 60 МПа	$U_{0.95} = 0,0058 \%$	MK-01.46.20
	давления		$\Pi\Gamma \pm (0,0250,50)$ %	«Методика ка-
			KT 0,05	либровки моду-
				лей и каналов из-
				мерения абсо-
				лютного давле-
				«кин
35.3	Каналы измерения аб-	от 0 до 60 МПа	$U_{0.95} = 0.0058 \%$	MK-01.46.20
	солютного давления		$\Pi\Gamma \pm (0,0250,50)$ %	«Методика ка-
				либровки моду-
				лей и каналов из-
				мерения абсо-
				лютного давле-
				ния»
35.4	Преобразователи	от 0 до 60,0 МПа	$U_{0.95} = 0.0058 \%$	MK-01.03.17
33.4	давления	от о до оо,о типа	Разряд 1,2,3,4	«Преобразовате-
	давления		$\Pi\Gamma \pm (0,022,50)$ %	ли давления из-
			KT (0,060,5)	мерительные, ма-
			111 (0,001110,0)	нометры цифро-
				вые. Методика
				калибровки»
				MK-01.09.18
				«Манометры
				цифровые, пре-
				образователи
				давления измери-
				тельные с цифро-
				вым дисплеем.
				Методика калиб-
				ровки»
	 - ИЭМЕРЕНИЯ ЖИЭИИ	CO VIMMILECTOFO A	СОСТАВА И СВОЙСТВ	DEHIECTD
36	Средства измерения в		COCTADA II CDUNCTD	DEILLEC I D
36.1	Вискозиметры	от 4,0·10 ⁻⁷ до	$U_{0.95} = 0.2 \%$	MK-01.24.20
		$1,0.10^{-1} \text{ m}^2/\text{c}$	$\Pi\Gamma \pm (5,0.10^{-3}$	«Методика ка-
		,	$1.0\cdot10^{-2}) \text{ m}^2/\text{c}$	либровки виско-
			· /	зиметров»
		от 1,0·10 ⁻³ до	$U_{0.95} = 0,2 \%$	MK-01.70.21
		$3,210^5 \Pi ac$	$\Pi\Gamma \pm (1,5 \cdot 10^{-2}$	«Методика ка-
			$1,0.10^{-1}) \Pi a \cdot c$	либровки виско-
			$\Pi\Gamma \pm (1,010,0) \%$	зиметров
				Брукфильда»
		от 10 до 300 с	$U_{0.95} = 0.2 \%$	
			$\Pi\Gamma \pm (0,20,5) c$	
25				
37	Средства измерений п	ІЛОТНОСТИ		

37.1	Ареометры	от 650 до 1840 кг/м ³	$U_{0.95} = 0.12 \text{ kg/m}^3$	MK-01.25.20
0,11	1 ip contemp	от оро до то го шил	$\Pi\Gamma \pm (0,320) \text{ kg/m}^3$	«Методика ка-
				либровки арео-
		мас. от 0 до 75 %	$U_{0.95} = 0.012 \%$	метров»
			$\Pi\Gamma \pm (0,10,5)$ %	
		об. от 0 до $105~\%$	$U_{0.95} = 0.012 \%$	
			$\Pi\Gamma \pm (0,11) \%$	
		2 2 2 2	2	
37.2	Измерители плотности	от $0,0$ до $3,0$ г/см ³	$U_{0.95} = 0.12 \text{ r/cm}^3$	MK-01.64.21
			$\Pi\Gamma \pm (0.1 \cdot 10^{-5})$	«Методика ка-
			1,0·10 ⁻³) г/см ³	либровки плот- номеров»
37.3	Денсиметры	от 0,0 до 3,0 г/см ³	$U_{0.95} = 0.12 \text{ г/cm}^3$	MK-01.63.21
37.3	денеиметры	01 0,0 до 3,0 17см	$\Pi\Gamma \pm (0.1\cdot10^{-5})$	«Методика ка-
			$1,0.10^{-3}) \text{ r/cm}^3$	либровки денси-
			, , , ,	тометров, изме-
				рителей оптиче-
				ской плотности»
38	Средства измерений в	лажности зерна, зерно	опродуктов, сельскохозяї	
38.1	Влагомеры зерна	от 5 до 35 %	$U_{0.95} = 0.23 \%$	MK-01.73.21
			$\Pi\Gamma \pm (0,50,8)$ %	«Методика ка-
				либровки влаго-
20.2	Vanaranana	5 45 0/	11 0.22 0/	меров зерна»
38.2	Установки воздушно-	от 5 до 45 %	$U_{0.95} = 0.23 \%$	МК-01.14.20 «Методика ка-
	тепловые		$\Pi\Gamma \pm 0.5 \%$	либровки устано-
				вок воздушно-
				тепловых»
39	• •	одержания компонент	ов в сельскохозяйственн	ых материалах и
20.1	пищевых продуктах	0 150 5		110000000000000000000000000000000000000
39.1	Измерители деформа-	от 0 до 150,7 усл. ед.	$U_{0.95} = 0.92 \text{ MKM}$	MK-03.50.21 Me-
	ции клейковины		$\Pi\Gamma\pm0,8$ усл. ед.	тодика калибров-ки. Измерители
				деформации
				клейковины
				I I I I I I I I I I I I I I I I I I I
40	Масс-спектрометры, х	кроматографы	L	1
40.1	Хромато-масс-	от 1 до 3000 а.е.м.	$U_{0.95} = 0.035 \%$	MK-01.33.20
	спектрометры, масс-	отношение сиг-	СКО (0,00110,0) %	«Методика ка-
	спектрометры, при-	нал/шум 70000:1	ОСКО (0,019,0) %	либровки детек-
	боры для тонко-			торов масс-
	слойной хромато-	от 0,5 до 100,0 мкг/л	$\Pi\Gamma\pm(0,0218,0)$ мкг/л	селективных»
	графии, детекторы			MK-01.68.21
	масс-селективные			«Методика ка-
				либровки хрома-
				то-масс- спектрометров»
1	i l			1
				MK-01.69 21
				МК-01.69.21 «Методика ка-

				спектрометров»
40.2	Хроматографы газовые	от 0 до 100 % метиловый спирт об. от 0,0001 до 0,0120 %	$U_{0.95} = 0,0058 \%$ CKO $(0,46) \%$ $U_{0.95} = 3,5 \%$ $\Pi\Gamma \pm (1015) \%$	МК-01.67.21 «Методика ка- либровки хрома- тографов газо- вых»
		спирты, изомеры, альдегиды от 0.8 до 90 мг/дм^3	$U_{0.95} = 3.5 \%$ $\Pi\Gamma \pm (1015) \%$	
40.3	Хроматографы жид- костные	от 0 до 100 % (по содержанию ком- понентов)	U _{0.95} =0,12 % CKO (0,0115,0) %	МК-01.17.20 «Методика калибровки хроматографов жид- костных Prominence» МК-01.105.21 «Методика калибровки хроматографов жид- костных»
41	Средства измерений н	злажности газов		
41.1	Гигрометры относи- тельной влажности	относительной влажности от 0 до 100 %	U _{0.95} =0,58 % ΠΓ ± (125) %	МК-01.05.17 «Методика калибровки приборов комбинированных, термогигрометров»
41.2	Измерители влажности и температуры, термогигрометры, приборы комбинированные	относительной влажности от 0 до 100 % температуры от -80 до 300 °C от 0 до 1200 гПа	$U_{0.95} = 0.58 \%$ $\Pi\Gamma \pm (125) \%$ $U_{0.95} = 0.023 \text{ °C}$ $\Pi\Gamma \pm (0.12.0) \text{ °C}$ $U_{0.95} = 0.012 \%$ $\Pi\Gamma \pm (225) \Gamma\Pi \text{ a}$	МК-01.05.17 «Методика калибровки приборов комбинированных, термогигрометров»
41.3	Датчики точки росы	температуры точки росы от -20,0 до 60,0 °C	$U_{0.95} = 0.12 ^{\circ}\mathrm{C}$ температуры точки росы $\Pi\Gamma \pm (0.63.0) ^{\circ}\mathrm{C}$	МК-01.56.20 «Методика калибровки датчиков температуры точки росы, каналов измерения температуры точки росы»

42	Средства измерений т	вердых и сыпучих ма	гериалов и веществ	
42.1	Анализаторы влажности	от 0,05 до 100 %	$U_{0.95} = 0.23 \%$ $\Pi\Gamma \pm (0.021.5) \%$	МК-01.51.20 «Методика ка- либровки анали- заторов влажно- сти»
43	Средства измерений с	одержания компонент	ов в газовых средах	1
43.1	Газоанализаторы, газосигнализаторы, анализаторы примесей в воздухе, одориметры газа, каналы измерения содержания компонентов в газовых средах	от 0 до 100 % об.д от 0 до 20000 мг/м ³ от 3 до 1000 ppm от 0 до 100 % НКПР от 0 до 1000 млн ⁻¹	$U_{0.95}$ =0,016 % $\Pi\Gamma \pm (0,125)$ % $U_{0.95}$ =5,78 мг/м^3 $\Pi\Gamma \pm (125)$ % $U_{0.95}$ =0,0005 ppm $\Pi\Gamma \pm (0,850)$ ppm $U_{0.95}$ =0,016 % HKПР $\Pi\Gamma \pm (125)$ % HKПР $U_{0.95}$ =4,6 млн^{-1} $\Pi\Gamma \pm (125)$ %	МК-01.34.20 «Методика калибровки газосигнализаторов»
43.2	Газоанализаторы универсальные, пробоотборные устройства	от 30 до 400 см ³	$U_{0.95} = 1,73 \%$ $\Pi\Gamma \pm 5 \%$	МК-01.58.21 «Методика ка- либровки аспира- торов сильфон- ных»
43.3	Генераторы газовых смесей	от 0,1 до 50 мг/м ³	$U_{0.95} = 5.8 \%$ $\Pi\Gamma \pm (712) \%$	МК-01.53.20 «Методика ка- либровки генера- тора ГДП»
43.4	Анализаторы паров этанола в выдыхаемом воздухе	от 0 до 2500 мг/м ³	$U_{0.95} = 4.6 \text{ MG/m}^3$ $\Pi\Gamma \pm (2595) \text{ MG/m}^3$ $\Pi\Gamma \pm (1020) \%$	МК-01.62.21 «Методика калибровки анализаторов паров этанола в выдыхаемом воздухе»
43.5	Интерферометры	от 0 до 3000 дел.	$U_{0.95}$ =0,0092 кПа ПГ \pm 1 дел.	МК-01.82.21 «Методика калибровки интерферометров»
43.6	Анализаторы выхлопа транспортных средств	СО от 0 до 10 %	$U_{0.95} = 0,00046 \%$ $\Pi\Gamma \pm (56) \%$	МК-05.160.19 «Анализаторы выхлопа транс-
		СН от 0 до 1 %	$U_{0.95} = 0.014 \%$ $\Pi\Gamma \pm (56) \%$	портных средств. Методика ка-
		СО2 от 0 до 10 %	$U_{0.95} = 0.016 \%$ $\Pi\Gamma \pm 6 \%$	либровки»
		О2 от 0 до 21 %	$U_{0.95} = 0.017 \%$	

			$\Pi\Gamma \pm 6\%$	
			III ± 0 /0	
		частота вращения от 0 до 10000 мин ⁻¹	$U_{0.95} = 1,2 \cdot 10^{-6}$ $\Pi\Gamma \pm 2,5 \%$	
		температура масла от 20 до 100 °C	$U_{0.95} = 0.023 ^{\circ}\text{C}$ $\Pi\Gamma \pm 2.5 ^{\circ}\text{C}$	
43.7	Дымомеры	КПР от 0 до 100 %	$U_{0.95} = 0.58 \%$ $\Pi\Gamma \pm (12) \%$	МК-05.182.20 «Дымомеры.
		от 0 до 600 мин ⁻¹	$U_{0.95} = 1,2 \cdot 10^{-6}$ $\Pi\Gamma \pm 2,5 \%$	Методика калибровки»
		от 0 до 100 °C	$U_{0.95} = 0.023 \text{ °C}$ $\Pi\Gamma \pm 2.5 \text{ °C}$	
43.8	Газоанализаторы	C ₃ H ₈ (01,7) % Oб.	U _{0.95} =0,0058 % ΠΓ ± (0,004 0,85) % Οδ.	МК-01.154.20 «Методика ка- либровки газо-
		СН ₄ (010) % Об.	$U_{0.95} = 0.014 \%$ $\Pi\Gamma \pm (0.15$ $1.0) \% \text{ Of.}$	сигнализаторов»
		СО (010) % Об. (0200) мг/м ³	$U_{0.95} = 0,00046 \%$ $\Pi\Gamma \pm (0,0415) \%$ $\Pi\Gamma \pm (0,7525) \text{ мг/м}^3$	
		O ₂ (0100) % Об.	$U_{0.95} = 0.017 \%$ $\Pi\Gamma \pm (0.0420.0) \% \text{ O6}.$	
		H ₂ (0100) % Oб.	$U_{0.95} = 0.046 \%$ $\Pi\Gamma \pm (0.1515) \% \text{ O6.}$ $\Pi\Gamma \pm (0.115) \% \text{ O6.}$	
		CO ₂ (016) % Oб.	$U_{0.95} = 0.016 \%$ $\Pi\Gamma \pm (0.25$ $9.5) \text{ M}\Gamma/\text{M}^3$	
		Cl ₂ (050) мг/м ³	$U_{0.95} = 5.8 \%$ $\Pi\Gamma \pm 20 \%$	
		NH ₃ (02000) мг/м ³	$U_{0.95} = 0{,}00046~\%$ $\Pi\Gamma \pm 15~\%$	

	1	1		T
		SO_2	$U_{0.95} = 5.8 \%$	
		(050) ppm	$\Pi\Gamma \pm 15\%$	
		(05 0) pp.m	111 – 10 70	
		NO_2	$U_{0.95} = 5.8 \%$	
		(020) ppm	$\Pi\Gamma \pm 15 \%$	
		II C	11 0.0022.0/	
		H_2S (0500) ppm	$U_{0.95} = 0.0023 \%$ $\Pi\Gamma \pm (20200) \text{ ppm}$	
		(0300) ppiii	$111 \pm (20200)$ ppin	
		NO		
		(04000) ppm	$U_{0.95} = 0.000021 \%$	
		(0100) % Oб.	$\Pi\Gamma\pm10~\%$	
44	Анализаторы состава,	свойств и показателей	качества нефти и нефтег	продуктов
44.1	Анализаторы состава,	от 60 до 110 ОЧ	$U_{0.95} = 0,23$ ед.ОЧ	MK-01.35.20
	свойств и показателей		$\Pi\Gamma \pm (1,52,0)$ ед.ОЧ	«Ме-тодика ка-
	качества нефти и	20 70 1111		либров-ки окта-
	нефтепродуктов	от 30 до 70 ЦЧ	$U_{0.95} = 0.58$ ед.ЦЧ	нометров Октан-
			$\Pi\Gamma \pm (26)$ ед.ЦЧ	ИМ» МК-01.71.21
		массовая доля серы	$U_{0.95} = 5.8 \%$	«Ме-тодика ка-
		от 0,00045 до 0,110 %	$\Pi\Gamma \pm (2,54,0)\%$	либров-ки окта-
		от 0,000 15 до 0,110 70	111 = (2,31,0) / 0	нометров» МК-
		массовая/ объемная	$U_{0.95} = 1,16 \%$	01.72.21 «Me-
		доля бензола от	$\Pi\Gamma \pm (1020) \%$	тодика калиб-
		0,2 до 10,0 %	, ,	ров-ки анализа-
				торов серы в
		массовая/объемная до-	$U_{0.95} = 4,6 \%$	нефти и нефте-
		ля эфиров	OCKO 5 %	продуктах» МК-
		от 0,5 до 20,0 %	$\Pi\Gamma \pm 10\%$	01.106.21 «Ме- тодика калиб-
			11 460/	ровки анализато-
		массовая/объемная доля ароматических уг-	$U_{0.95} \!=\! 4,\!6 \% \ \Pi\Gamma \pm (110) \%$	ров топлив
		леводородов	$111 \pm (110) / 0$	Miniscan»
		от 0,5 до 10,0 %		MK-01.107.21
				«Методика ка-
		от 0,6500	$U_{0.95} = 0,0002 \text{ r/cm}^2$	либ-ровки ана-
		до 0,9999 г/см ²	$\Pi\Gamma \pm 0,0002$ Γ/cm^2	лизато-ров дав-
				ления па-ров
		от -70 до 360 °C	$U_{0.95} = 1,16 {}^{\circ}\text{C}$	MINIVAP» MK-01.110.21
			$\Pi\Gamma \pm (0,21,0) ^{\circ}C$	«Методика ка-
			$\Pi\Gamma\pm1$ %	либ-ровки изме-
		от 1 до 140 кПа	$U_{0.95} = 6.9 \%$	рителя предель-
		OI I μο I το KIIa	$\Pi\Gamma \pm (210)$ κ Π a	ной тем-
			III — (210) KIIII	пературы филь-
				труемости неф-
				те-продуктов ИТФ»
44.2	Анализаторы бензина,	компоненты	U _{0.95} = 1,5 %	MK-01.71.21
	серы	от 0,1 до 60 %	$\Pi\Gamma \pm (515) \%$	«Методика ка-
<u> </u>			· - / · -	

			ПГ + 2	
		октановое число	$\Pi\Gamma\pm 2$ ед.	либровки окта-
		от 0,77 до 104 ед.		нометров»
				MK-01.72.21
		массовая доля серы	$U_{0.95} = 2.3 \%$	«Методика ка-
		от 0,00045 до 0,110 %	$\Pi\Gamma \pm (2,54,0) \%$	либровки анали-
		1,1111111111111111111111111111111111111	()-	заторов серы в
				нефти и нефте-
				продуктах»
				MK-01.106.21
				«Методика ка-
				либровки анали-
				заторов топлив
				Miniscan»
44.3	Анализаторы азота и	от 0,01 до 100 %	U _{0.95} =0,03 %	MK-01.32.20
	протеина, анализаторы	от 0,2 до 50,0 мг	CKO (0,030,50) %	«Методика ка-
	азота/белка		$\Pi\Gamma \pm (0.16+0.12 \text{ mH})$ мг	либровки анали-
			OCKO 5 %	заторов азота»
45	Анализаторы темпера	туры вспышки, низко	температурных свойств,	анилиновой
	точки нефти и нефтеп	родуктов		
45.1	Регистраторы авто-	от 10 до 370 °C	$U_{0.95} = 1,16 \%$	MK-01.36.20
	матические темпе-		$\Pi\Gamma \pm (25)$ °C	«Методика ка-
	ратуры вспышки			либровки реги-
	нефтепродуктов			страторов темпе-
				ратуры вспышки
				нефтепродуктов
				автоматические
				«Вспышка-АЗТ»
	Спанства изманаций п	Н родину пастропов и	и окислительно-восстано	
46	тенциала	ит водных растворов и	i oknesiniesibno-bocciano	вительного по-
46.1	рН-метры, иономеры	от 0 до14 рН	$U_{0.95} = 0.012 \text{ pH}$	MK-01.06.18
	лабораторные	от -20 до 20 рХ	$\Pi\Gamma\pm0.03~\mathrm{pH}$	«Методика ка-
	1 1	1	$\Pi\Gamma \pm 0.03 \text{ pX}$	либровки рН-
			111 = 0,03 p11	метров»
		от -1999 до1999 мВ	$U_{0.95} = 0.071 \text{ MB}$	MK-01.108.21
		01-1777 до1777 мв	$\Pi\Gamma \pm 2 \text{ MB}$	«Методика ка-
			$III \pm 2 MB$	' '
				либровки ионо-
47	C		<u> </u>	меров»
47 47.1		дельнои электрическо от 0 до 100 См/м	ой проводимости жидкост U _{0.95} =0,12 %	
4/.1	Кондуктометры,	01 0 до 100 См/м	,	MK-01.37.20
	кондуктометры-		$\Pi\Gamma \pm (0,515,0) \%$	«Ме-тодика ка-
	солемеры, анализа-		Разряд 2	либровки кондук-
	торы			тометров»
	кондуктометриче-	от -5,0 до 105,0 °C	$U_{0.95} = 0.023 {}^{\circ}\text{C}$	
	ские		$\Pi\Gamma \pm (0,11,0)$ °C	
		4 2000 / 3		
		от 1 до 2000 мг/дм ³	$\Pi\Gamma \pm (35) \%$	
48	Анапизатов и состова	рольі и пастропор		
48.1	Анализаторы состава Анализаторы раство-	от 0 до 20 мг/дм ³	U _{0.95} = 0,21 %	MK-01.74.21
10.1	ренного в воде кисло-	от о до 20 мп/дм	$\Pi\Gamma \pm (210) \%$	«Методика ка-
	*		$111 \pm (210) / 0$	либровки анали-
	рода			тиоровки анали-

				заторов кислоро- да»
48.2	Нитратомеры	от 1 до 10000 мг/кг от 30 до 100 %	$U_{0.95} = 0.16 \%$ $\Pi\Gamma \pm 5 \%$ $\Pi\Gamma \pm 20 \%$	МК-01.76.21 «Методика калибровки нитратомеров»
48.3	Анализаторы ртути, комплексы ртутеметрические	от 1,0·10 ⁻⁴ до 1,0 мкг/дм ³ от 0,2 до 50000 мкг/кг	$U_{0.95} = 0.58 \%$ $\Pi\Gamma \pm (510) \%$ $\Pi\Gamma \pm (1030) \%$	МК-01.20.20 «Методика калибровки комплексов ртутеметрических «Юлия-5КМ» МК-01.75.21 «Методика калибровки комплексов ртутеметрических»
48.4	Титраторы	ЭДС электродной системы от -2050 до 2050 мВ от 0,010 до 14,000 ед. рН температуры от -30 до 130 °C	$U_{0.95}$ =0,071 мВ $\Pi\Gamma \pm 0,2$ мВ $U_{0.95}$ = 0,012 рН $\Pi\Gamma \pm 0,04$ ед. рН $U_{0.95}$ = 0,058 °C $\Pi\Gamma \pm 0,2$ °C	МК-01.77.21 «Методика ка- либровки титрат- оров»
48.5	Полярографы, вольтамперметрические анализаторы	от 1·10 ⁻⁴ до 1 мг/дм ³	$U_{0.95} = 0.3 \%$ $\Pi\Gamma \pm 25 \%$ CKO 4 %	МК-01.78.21 «Методика калибровки полярографов» МК-01.18.20 «Методика калибровки анализаторов вольтамперометрических»
48.6	Анализаторы про- мышленных и сточных вод, анализаторы жид- кости, приборы эколо- гического контроля	КПР от 0 до 100 % от 0 до 300 мг/дм ³ от 1,0 до 99,0 ус. ед.	$U_{0.95} = 0,58 \%$ $\Pi\Gamma \pm (23) \%$ $U_{0.95} = 1,16 \%$ $\Pi\Gamma \pm (0,0052,504) \text{ мг/дм}^3$ CKO 10 %	МК-01.19.20 «Ме-тодика калибровки анализаторов жидкости Флюорат» МК-01.79.21 «Ме-тодика ка-
		от 1,0 до 99,0 ус. ед.	CRO 10 70	«Ме-тодика ка- либровки анали- заторов сточ-ных

40				вод»
49	Анализаторы жидкос		II 0.0022.0/	MIC 01 00 21
49.1	Анализаторы углерода	от 0,0004 до 6,0 %	$U_{0.95} = 0.0023 \%$ CKO $(0.0050,1) \%$ $\Pi\Gamma \pm (0.0001$ 0.0005) %	МК-01.80.21 «Методика ка- либровки анали- заторов углеро-
			$\Pi\Gamma \pm 5\%$	да»
49.2	Системы капиллярного электрофореза	рабочая длина волны 254 нм предел обнаружения при отношении сигнал/шум 3/1 при положительной полярности источника высокого напряжения прибора бензойной кислоты не более 0,8 мкг/см³,	U _{0.95} = 1,16 % CKO 5 %	МК-01.81.21 «Методика калибровки систем капиллярного электрофореза»
		- при отрицательной полярности источника высокого напряжения прибора хлорид-ионов не более 0,5 мкг/см ³		
49.3	Спектрометры оптико- эмиссионные, рентге- нофлуорисцентные, флуоресцентные, эмиссионные	от 0,01 до 100 % от 0,005 до 200 мг/дм ³	$U_{0.95} = 0.29 \%$ $\Pi\Gamma \pm (180) \%$ CKO $(2,050,0) \%$	МК-01.39.20 «Методика калибровки спектрометров» МК-01.40.20
		от 0,0 до 2,5 Б	$U_{0.95} = 0.29 \%$ CKO $\pm 0.5 \%$	«Методика ка- либровки спек- трометров эмис-
		от 53000 до 10 см ⁻¹	$U_{0.95} = 0.58 \text{ cm}^{-1}$ $\Pi\Gamma \pm (0.051,00) \text{ cm}^{-1}$	сионные с индуктивно-связанной плазмой»
		от 119 до 900 нм	$U_{0.95} = 0,58$ нм ПГ $\pm (0,31,5)$ нм	МК-01.87.21 «Методика калибровки спек-
		массовая доля элементов от 10 ⁻⁵ до 100 %	$U_{0.95} = 0.29 \%$ $\Pi\Gamma \pm (350) \%$	трометров флуо- ресцентных» МК 01.88.21 «Мето- дика калибровки спектрометров эмиссионных»
		концентрация от 0,0001 до 20 % отношение сигнал/шум 10000:1	CKO (0,1525,0) %	

49.4	Приборы для определения числа падения	от 60 до 900 ед. от 0 до 900 с	$U_{0.95} = 0.70 \text{ c}$ $\Pi\Gamma \pm 1 \text{ c}$	МК-01.65.21 «Методика калибровки приборов определения числа падения»
49.5	Анализаторы качества молока, криоскопы молочные	масс. доля жира от 0,5 до 30,0 % масс. доля белка от 1,5 до 14 % масс. доля СОМО от 6 до 70 % плотность от 1000 до 1040 кг/м³ время вытекания жидкости от 0,1 до 99 с количество соматических клеток в 1 см³ от 90 до 1500 тыс. ед. диапазон измерений рН от 3 до 8 рН диапазон показаний температуры от 0,000 до -2,000 °C диапазоны измерений выходного сигнала от 0,02 до 20,00 отн. ед.	$U_{0.95} = 0.035 \%$ $\Pi\Gamma \pm (0,10,5) \%$ $U_{0.95} = 0.069 \%$ $\Pi\Gamma \pm (0,150,30) \%$ $U_{0.95} = 0.46 \%$ $\Pi\Gamma \pm (0,20,6) \%$ $U_{0.95} = 0.23 \text{ кг/м}^3$ $\Pi\Gamma \pm 0.3 \text{ кг/м}^3$ $U_{0.95} = 0.69 \text{ c}$ $\Pi\Gamma \pm 5 \%$ $U_{0.95} = 0.035 \%$ $\Pi\Gamma \pm (520) \%$ $U_{0.95} = 0.012 \text{ pH}$ $\Pi\Gamma \pm (0.030,05) \text{ pH}$ $\Pi\Gamma \pm (0.0020,050) \text{ °C}$ СКО $(0.010,05) \text{ отн. ед.}$	МК-01.31.20 «Методика калибровки криоскопов молочных» МК-01.28.20 «Методика калибровки анализаторов качества молока»
	ІОФИЗИЧЕСКИЕ И Т			
50		гемпературы контакты		MV 01 04 17
50.1	Термометры цифро- вые	от -80 до 660 °C от 660 до 1200 °C	$U_{0.95} = 0.023 \text{ °C}$ $U_{0.95} = 0.69 \text{ °C}$ $\Pi\Gamma \pm (0.0515,0) \text{ °C}$	МК-01.04.17 «Методика ка- либровки термо- метров цифро- вых»
50.2	Термометры жид- костные стеклянные	от -80 до 400 °C	$U_{0.95} = 0.023 \text{ °C}$ $\Pi\Gamma \pm (0.0510.0) \text{ °C}$	МК-01.49.20 «Методика калибровки термометров стеклян-

				ных жидкостных»
50.3	Термометры мано- метрические	от -80 до 600 °C	$U_{0.95} = 0.023 \text{ °C}$ $\Pi\Gamma \pm (110) \text{ °C}$	МК-01.12.19 «Методика калибровки термометров биметаллических, манометрических»
50.4	Термометры биме- таллические	от -80 до 600 °C	U _{0.95} = 0,023 °C ΠΓ ± (110) °C	МК-01.12.19 «Методика калибровки термометров биметаллических, манометрических»
50.5	Термометры сопротивления	от -200 до 660 °C от 660 до 850 °C	$U_{0.95} = 0.023 ^{\circ}\text{C}$ $U_{0.95} = 0.69 ^{\circ}\text{C}$ Класс допуска AA $\Pi\Gamma \pm (0.1 + 0.0017 t) ^{\circ}\text{C}$ Класс допуска A $\Pi\Gamma \pm (0.15 + 0.002 t) ^{\circ}\text{C}$ Класс допуска B $\Pi\Gamma \pm (0.3 + 0.005 t) ^{\circ}\text{C}$ Класс допуска C $\Pi\Gamma \pm (0.6 + 0.01 t) ^{\circ}\text{C}$	ГОСТ 8.461-2009 МК-01.152.21 «Ме-тодика ка- либровки термо- метров со- противления»
50.6	Преобразователи термоэлектрические из неблагородных металлов	от -40 до 660 °C от 660 до 1200 °C	$U_{0.95} = 0.023$ °C $U_{0.95} = 0.69$ °C $\Pi\Gamma \pm (1.510)$ °C Класс допуска 1 Класс допуска 2	МК-01.13.19 «Методика ка- либровки преоб- разователей тер- моэлектрических из неблагородных металлов»
50.7	Термометры медицинские	от 34 до 42 °C	$U_{0.95} = 0.023 ^{\circ}\text{C}$ $\Pi\Gamma \pm 0.1 ^{\circ}\text{C}$	МК-01.111.21 «Методика ка- либровки термо- метров медицин- ских»
50.8	Термостаты жидкост- ные	от -80 до 300 °C	$U_{0.95} = 0.023 \text{ °C}$ $\Pi\Gamma \pm (0.010.2) \text{ °C}$	МК-01.60.21 «Методика калибровки термостатов»
50.9	Калибраторы температуры	от -80 до 660 °C от 660 до 1100 °C	$U_{0.95} = 0.023 \text{ °C}$ $U_{0.95} = 0.69 \text{ °C}$ $\Pi\Gamma \pm (0.010.2) \text{ °C}$	МК-01.61.21 «Методика калибровки калибраторов температуры»
50.10	Термометры сопротивления платиновые вибропрочные	от -80 до 500 °C	$U_{0.95} = 0.023~\%$ ПГ $\pm~0.1~^{\circ}$ С 3 разряд	МК-01.152.21 «Методика ка- либровки термо-

				MOTPOR COMPOTER
				метров сопротив- ления»
				JICHINA//
50.11	Преобразователи	от 300 до 660 °C	$U_{0.95} = 0.023 ^{\circ}\text{C}$	MK-01.52.20
	термоэлектрические	от 660 до 1200 °C	$U_{0.95} = 0.69 ^{\circ}\text{C}$	«Методика ка-
	платинородий-		2 разряд	либровки преоб-
	платиновые эталон-		3 разряд	разователей тер-
	ные			моэлектрических
				платинородий-
				платиновых эта-
				лонных»
50.12	Термометры ртут-	от -80 до 400 °C	$U_{0.95} = 0.023 ^{\circ}\text{C}$	MK-01.57.20
	ные стеклянные	, ,	2 разряд	«Методика ка-
			3 разряд	либровки термо-
				метров ртутных
				стеклянных»
50.13	Преобразователи тер-	(01200) °C	$U_{0.95} = 0.35 {}^{\circ}\text{C}$	MK-01.13.19
	моэлектрические	,	$\Pi\Gamma \pm (1,510) {}^{\circ}\text{C}$	«Методика ка-
				либровки преоб-
				разователей тер-
				моэлектрических
				из неблагородных
				металлов»
51	Пирометры излучени	я и температурные лам	мпы	
51.1	Термометры инфра-	от -40 до 1500 °C	$U_{0.95} = 0,23 {}^{\circ}\mathrm{C}$	MK-01.01.17
	красные, пирометры		$\Pi\Gamma \pm (125)$ °C	«Методика ка-
			$\Pi\Gamma \pm (0,52,0) \%$	либровки пиро-
				метров, термо-
				метров инфра- красных»
				красных//
51.2	Тепловизоры	от -40 до 1500 °C	$U_{0.95} = 0.23 ^{\circ}\text{C}$	MK-01.44.20
	_		$\Pi\Gamma \pm (25)$ °C	«Методика ка-
			$\Pi\Gamma\pm\left(1\ldots4\right)\%$	либровки тепло-
***		TA CITION I		визоров»
	РЕНИЯ ВРЕМЕНИ И			
52 52.1	Средства измерений вр Частотомеры элек-	от 0,005 Гц	$U_{0.95} = 4,2 \cdot 10^{-10}$	MK-08.25.20
32.1	тронно-счетные	до 37,5 ГГц	$00.95 - 4.2 \cdot 10$ ПГ $\pm 5 \cdot 10^7$ за год	«Частотомеры
	-r -	700,0114	ти <i>– э</i> то затод	электронно-
				счетные. Методи-
				ка калибровки»,
				MK-08.37.20
				«Частотомеры.
				Методика калиб-
50.0	II	am 105 E 10 EE	11 424010	ровки»
52.2	Измерители частоты	от 125 Гц до 12 ГГц	$U_{0.95} = 4.2 \cdot 10^{-10}$	МК-08.61.20
	гетеродинные		$\Pi\Gamma \pm 5.10^{-4}1.10^{-6}$	«Измерители ча- стоты гетеродин-
				ные. Методика
	<u> </u>			пыс. тистодика

				калибровки»
52.3	Измерители частоты резонансные	от 0,02 до 12 ГГц	$U_{0.95}=4,2\cdot10^{-10}$ $\Pi\Gamma\pm(0,050,5)\%$	МК-08.62.20 «Измерители частоты резонансные. Методика калибровки»
52.4	Частотомеры стрелочные показывающие	от 10 Гц до 20 кГц от 1 до 500 В	U _{0.95} = 4,2·10 ⁻¹⁰ KT 0,02	МК-08.84.20 «Частотомеры стрелочные показывающие. Методика калибровки»
52.5	Генераторы прецизионные кварцевые	от 0,01 Гц до 2 МГц от 0,2 мВ до 2,5 В	$U_{0.95}{=}\ 4.2\cdot 10^{-10}$ $\Pi\Gamma\pm3\cdot 10^{-7}\ 5\cdot 10^{-7}$ $U_{0.95}{=}\ (1,15\cdot 10^{-3}\cdot$ $U{+}1,27\cdot 10^{-6})\ B,$ где U – измеренное значение напряжения, B ; $\Pi\Gamma\pm(46)\ \%$	МК-08.31.20 «Генераторы сигналов Методика калибровки»
52.6	Генераторы низкоча- стотные	от 10 Гц до 30 МГц от 1 мВ до 100 В	$U_{0.95}{=}4,2\cdot 10^{-10}$ $\Pi\Gamma\pm(14)\%$ $U_{0.95}{=}(1,15\cdot 10^{-3}\cdot$ $U{+}1,27\cdot 10^{-6})$ B, где $U-$ измеренное значение напряжения, B; $\Pi\Gamma\pm(110)\%$	МК-08.48.20 «Генераторы низ-кочастотные. Методика калибровки»
52.7	Генераторы сигналов ВЧ	от 0,1 МГц до 37,5 ГГц от 10 ⁻¹² до 1 Вт от 0 до 85 дБ	$U_{0.95}$ = 4,2·10 ⁻¹⁰ $\Pi\Gamma \pm (0,11)$ % $U_{0.95}$ = 4,6 % $\Pi\Gamma \pm (0,51,5)$ дБ	МК-08.49.20 «Генераторы сигналов ВЧ. Методика калибровки»
52.8	Генераторы сигналов сложной формы	от 0,01 Гц до 1 МГц от 0 до 10 мВ от 10 до 100 мВ от 100 мВ до 1 В от 1 до 10 В	$U_{0.95} = 1,2 \cdot 10^{-7}$ $\Pi\Gamma \pm (23) \%$ $U_{0.95} = (3,45 \cdot 10^{-4} \cdot U +3,45 \cdot 10^{-6}) \text{ B}$ $U_{0.95} = (8,05 \cdot 10^{-5} \cdot U +4,60 \cdot 10^{-6}) \text{ B}$ $U_{0.95} = (8,05 \cdot 10^{-5} \cdot U +4,60 \cdot 10^{-5}) \text{ B},$ $U_{0.95} = (8,05 \cdot 10^{-5} \cdot U +4,60 \cdot 10^{-4}) \text{ B},$ $\Gamma = (4,0) = ($	МК-08.50.20 «Генераторы сигналов сложной формы. Методика калибровки»

52.9	Приемники- компараторы	от 10 до 200 кГц	$U_{0.95}$ = 4,2·10 ⁻¹⁰ ПГ ± 1·10 ⁻⁹ за 100 с	МК-08.72.20 «Приемники- компараторы. Методика калиб- ровки»
52.10	Компараторы частоты	1; 5; 10 МГц	$U_{0.95}$ = 4,2·10 ⁻¹⁰ CKO: 7·10 ⁻¹³ 3a 1 c 5·10 ⁻¹⁴ 3a 10 c 8·10 ⁻¹⁵ 3a100 c	МК-08.66.20 «Компараторы частоты. Методи-ка калибровки»
52.11	Синхронометры кварцевые	от 10 нс до 0,1 мкс	$U_{0.95} = 4,2 \cdot 10^{-10}$ $\Pi\Gamma \pm 5 \cdot 10^{7}$	МК-08.24.20 «Синхронометры кварцевые. Методика калибровки»
52.12	Делители частоты	от 1 кГц до 10 МГц	$\begin{array}{c} U_{0.95}{=}4,2{\cdot}10^{-10}\\ \Pi\Gamma\pm10^{-6}10^{-7} \end{array}$	МК-08.53.20 «Делители частоты. Методика калибровки»
52.13	Умножители частоты	от 50 до 400 МГц	$U_{0.95} = 4,2 \cdot 10^{-10}$ $\Pi\Gamma \pm 5 \cdot 10^{8}$	МК-08.79.20 «Умножители частоты. Методика калибровки»
52.14	Синтезаторы и преобразователи частоты	от 50 Гц до 1,3 ГГц	$U_{0.95}{=}4,2{\cdot}10^{-10}$ ПГ ${\pm}5{\cdot}10^{-7}$ за год	МК-08.77.20 «Синтезаторы и преобразователи частоты. Методика калибровки»
52.15	Приборы для определения хода механических часов	120 с/сут	$U_{0.95} = 1.2 \cdot 10^{-7}$ $\Pi\Gamma \pm 2 \text{ c/cy}$	МК-08.71.20 «Приборы для определения хода механических часов. Методика калибровки»
52.16	Секундомеры электрические	от 0,1 до 30 мин	$U_{0.95}$ = 1,2·10 ⁻⁷ $\Pi\Gamma$ ± 0,03 с в интервале от 1 до 3 с $\Pi\Gamma$ ± 0,015 с в интервале от 1,0 до 10 мин	МК-08.76.20 «Секундомеры электрические. Методика калиб- ровки»
52.17	Секундомеры калиб- раторы	от 1·10 ⁻⁶ до 1·10 ³ с	$U_{0.95}=1,2\cdot 10^{-7}$ $\Pi\Gamma\pm 1\cdot 10^{-6}$	МК-08.75.20 «Секундомеры калибраторы. Методика калибровки»

50.10		1 2000	(0.00, 10-2	NGC 00 00 16
52.18	Секундомеры механи-	от 1 до 3600 с	$U_{0.95} = (2,30 \cdot 10^{-2} +$	MK-08.02.16
	ческие		$T_{\rm инт} \cdot \delta_{\rm on}$) с, где $T_{\rm инт}$ –	«Секундомеры
			длительность интервала	механические.
			времени, с; $\delta_{\text{оп}}$ – относи-	Методика калиб-
			тельная погрешность	ровки»
			опорного генератора, отн.	
			ед.	
			$\Pi\Gamma \pm (0,11, 8) c$	
52.19	Секундомеры элек-	от 1,0·10 ⁻² до 8,64·10 ⁴ с	$U_{0.95} = 1,2 \cdot 10^{-6} c$	MK 08-01-16
	тронные		$\Pi\Gamma \pm (9.10^{-6} \cdot T_x1) c$	«Секундомеры
				электронные. Ме-
				тодика калибров-
				ки»,
				MK 08-03-18
				«Секундомеры
				электронные. Ме-
				тодика калибров-
				ки»,
				MK-08.34.20
				«Секундомеры
				электронные. Ме-
				тодика калибров-
				ки»
			10	
52.20	Радиочасы	от 1 с до 24 ч	$U_{0.95} = 4,2 \cdot 10^{-10}$	MK-08.74.20
			$\Pi\Gamma \pm 0,1$ с 1000 мкс	«Радиочасы. Ме-
				тодика калибров-
				ки»
52.21	Измерители времен-	от 10 нс до 0,1 с	$U_{0.95} = 4,2 \cdot 10^{-10}$	MK-08.54.20
32.21	ных интервалов	01 10 не до 0,1 с		«Измерители
	ных интервалов		$\Pi\Gamma \pm (1.10^{-5} \tau_{\text{\tiny H3M}} + 0.8.10^{-9}) c$	временных ин-
			за год, где тизм – измерен-	тервалов. Мето-
			ный интервал времени, с $\Pi\Gamma \pm 1.10^4$	дика калибровки»
			111 ± 1·10	дика казторовки
52.22	Источники временных	от 1 нс до 1 с	$U_{0.95} = 4,2 \cdot 10^{-10}$	MK-08.64.20
	сдвигов	51 1 110 A5 1 0	$\Pi\Gamma \pm (1.10^{-5} + 0.5 \text{ нc})$ за год	«Источники вре-
	, ,		111 — (1 10 + 0,5 пс) за 10д	менных сдвигов.
				Методика калиб-
				ровки»
				1
52.23	Системы измерения	от 1 до 3600 с	$U_{0.95} = 0.29 \text{ c}$	MK-08.78.20
	длительности соеди-			«Системы изме-
	нений			рения длительно-
		от 3601 до 10800 с	$U_{0.95} = 0.58 \text{ c}$	сти соединений.
			$\Pi\Gamma \pm 1$ c	Методика калиб-
				ровки»
52.24	Счетчики импульсов	от 1 мс до 100 с	$U_{0.95} = 1, 2 \cdot 10^{-7}$	MK-08.39.20
	,	от 45 до 55 Гц	$\Pi\Gamma \pm (0,1100) \text{ MC}$	«Счетчики им-
				пульсов. Методи-
				ка калибровки»
				

53 113 NIE	РЕНИЯ ЭЛЕКТРИЧЕ(Спелства измерений ст			
53.1	Средства измерений сы Калибраторы постоян-		$U_{0.95} = (11.5 \cdot 10^{-6} \cdot X +$	MK-08.12.20
33.1	ного тока	от г на до тоо на	60.95- (11,5-10 - А) 460·10 ⁻⁶ к) нА	«Калибраторы
		от 100 нА до 1 мкА от 1 мкА до 10 мкА	U _{0.95} = (11,5·10 ⁻⁶ ·X+ 46·10 ⁻⁶ к) нА	постоянного тока Методика калиб- ровки»
			$U_{0.95} = (11,5 \cdot 10^{-6} \cdot X + 8,05 \cdot 10^{-6} \text{ k}) \text{ нA}$	
		от 10 мкА до 100 мкА	$U_{0.95}$ = (11,5·10 ⁻⁶ ·X+6,9·10 ⁻⁶ к) нА	
		от 100 мкА до 10 мА	$U_{0.95}$ = (11,5·10 ⁻⁶ ·X+ 4,6·10 ⁻⁶ к) нА	
		от 10 мА до 100 мА	U _{0.95} = (28,8·10 ⁻⁶ ·X+ 4,6·10 ⁻⁶ к) нА	
		от 100 мА до 1 А	U _{0.95} = (115·10 ⁻⁶ ·X+ 11,5·10 ⁻⁶ к) нА	
			где X – значение измеренной величины, κ – предел измерений	
		от 1 А до 10 А	$U_{0.95} = \left(0,001 \cdot \frac{X}{R_9}\right), MA$	
53.2	Установки измерительные постоянного	от 100 нА до 1 мкА	$U_{0.95} = (11,5 \cdot 10^{-6} \cdot X + 46 \cdot 10^{-6} \text{ к}) \text{ нA}$	МК-08.99.20 «Установки из-
	тока	от 1 мкА до 10 мкА	$U_{0.95}$ = (11,5·10 ⁻⁶ ·X+ 8,05·10 ⁻⁶ к) мкА	мерительные по- стоянного тока. Методика калиб- ровки»
		от 10 мкА до 100 мкА	$U_{0.95} = (11,5 \cdot 10^{-6} \cdot X + 6,9 \cdot 10^{-6} \text{ к}) \text{ мкА}$	ровки
		от 100 мкА до 10 мА	$U_{0.95} = (11,5 \cdot 10^{-6} \cdot X + 4,6 \cdot 10^{-6} \text{ к}) \text{ мкА}$	
		от 10 мА до 100 мА	$U_{0.95}$ = (28,8·10 ⁻⁶ ·X+ 4,6·10 ⁻⁶ к) мкА	
		от 100 мА до 1 А	$U_{0.95}$ = (115·10 ⁻⁶ ·X+ 11,5·10 ⁻⁶ к) мА	
		от 1 А до 10 А	$U_{0.95} = (0.0023 \cdot 10^{-6} \cdot X + 5.8 \cdot 10^{-6} \text{ K}) \text{ MA}$	

	T			
			где X – значение измеренной	
			величины, к – предел изме-	
			рений $\Pi\Gamma \pm (0,010,05)~\%$	
			111 + (0,010,03) /0	
53.3	Амперметры универ-	от 1 мкА до 330 мкА	$U_{0.95} = (17.5 \cdot 10^{-6} \cdot X +$	MK-08.13.20
	сальные цифровые		0,023) мкА	«Амперметры и
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	вольтметры уни-
		от 0,3 мА до 3,3 мА	$U_{0.95} = (155 \cdot 10^{-6} \cdot X +$	версальные циф-
		01 0,5 M1 40 5,5 M1	$0.058 \cdot 10^{-3}$) MA	ровые, вольтмет-
		от 3 мА до 33 мА	$U_{0.95} = (155 \cdot 10^{-6} \cdot X +$	ры постоянного
		013 ми до 33 ми	$0,288\cdot10^{-3}) \text{ MA}$	тока электрон-
			,	ные. Методика
		от 33 мА до 330 мА	$U_{0.95} = (155 \cdot 10^{-6} \cdot X +$	калибровки»
		01 33 МА до 330 МА	2,88·10 ⁻³) mA	r
			2,00 10 / 1111	
		от 0,3 А до 3 А	$U_{0.95} = (437 \cdot 10^{-6} \cdot X +$	
		01 0,5 А до 5 А	50,6·10 ⁻⁶) A	
		от 3 А до 11 А	$U_{0.95} = (690 \cdot 10^{-6} \cdot X +$	
		013 Адолга	575·10 ⁻⁶) A	
			,	
		от 11 А по 20 5 А	$U_{0.95} = (1150 \cdot 10^{-6} \cdot X +$	
		от 11 А до 20,5 А	863·10 ⁻⁶) A	
			,	
		от 20 А до 50 А	где Х – значение воспроиз-	
		01 20 А до 30 А	водимой величины	
			$U_{0.95} = 0.040 \cdot I + 0.0046 \cdot I_n, \%$	
			где, І- воспроизводимое зна-	
			чение тока; I _n - предел изме-	
			рения	
			$\Pi\Gamma \pm (0,0050,5)$ %	
53.4	Амперметры постоян-	от 1 мкА до 1 мА	$U_{0.95} = 0.0029 \cdot I + 0.00058 \cdot I_n, \%$	MK-08.33.20
	ного тока	от 1 мА до 10 мА	$U_{0.95} = 0.0029 \cdot I + 0.00038 \cdot I_n, \%$ $U_{0.95} = 0.0029 \cdot I + 0.00023 \cdot I_n, \%$	«Амперметры,
	HOIO IORA	от 10 мА до 100 мА	$U_{0.95} = 0.0029 \cdot I + 0.00058 \cdot I_n$	вольтметры, ват-
		от то ма до тоо ма	%	тметры. Методи-
		от 100 мА до 1 А	$U_{0.95} = 0.0058 \cdot I + 0.0015 \cdot I_n, \%$	ка калибровки»
		01 100 мл до 1 11	1, 11	ка калиоровки//
		от 1 А до 10 А	$U_{0.95} = 0.0092 \cdot I + 0.0023 \cdot I_n, \%$	
		от тидо то т	00.95= 0,0092 1+ 0,0023 In, /0	
		от 10 А до 50 А	TT 0.040 T 0.0046 T 0.	
		G- • • • • • • • • • • • • • • • • •	$U_{0.95} = 0.040 \cdot I + 0.0046 \cdot I_n, \%$	
			где, І- воспроизводимое зна-	
			чение тока; Іп- предел измерения	
			KT (0,10,5)	
			(3,23,2)	
53.5	Амперметры постоян-	от 10 ⁻⁶ до 50 А	$U_{0.95} = 0,0035 \%$	MK-08.33.20
	ного тока		KT (1,04,0)	«Амперметры,
				вольтметры, ват-
				тметры. Методи-
				ка калибровки»

53.6	Нановольтамперметры	от 5·10 ⁻⁸ до 5·10 ⁻² В от 10 ⁻⁹ до 5·10 ⁻⁵ А	$U_{0.95} = 0.023 \%$ $\Pi\Gamma \pm (15) \%$	МК-08.86.20 «Нановольтам- перметры. Мето- дика калибровки»
54	Средства измерений эл	 ектролвижущей силы	и постоянного напряжен	ия
54.1	Меры э.д.с., элементы нормальные	от 1,018540 до 1,019600 В	U _{0.95} = 0,0012 % KT (0,0050,01)	МК-08.101.20 «Меры ЭДС, элементы нормальные. Методика калибровки»
54.2	Источники опорного напряжения	от 1 до 10 В	U _{0.95} = 0,0013 % ΠΓ± (0,0010,005) %	МК-08.111.20 «Источники опорного напря- жения. Методика калибровки»
54.3	Калибраторы напряжения	от 1 мкВ до 100 мВ от 100 мВ до 1 В	$\begin{array}{c} \textbf{J}_{0.95} = (2.88 \cdot 10^{-6} \cdot \textbf{X} + 4.03 \cdot 10^{-6} \cdot \textbf{k}) \\ \textbf{MB} \\ \textbf{U}_{0.95} = (1.73 \cdot 10^{-6} \cdot \textbf{X} + 0.35 \cdot 10^{-6} \\ \cdot \textbf{K}) \textbf{MB} \end{array}$	«Калибраторы напряжения. Ме-
		от 1 В до 10 В	$U_{0.95} = (0.58 \cdot 10^{-6} \cdot X + 0.058 \cdot 10^{-6})$	тодика калибров- ки»
			κ) В где X — значение измеренной величины, κ — предел измерений KT 0,0002 ПГ \pm (0,02 0,0002) %	
54.4	Калибраторы напряже-	от 0,1 мкВ до 100 мВ	$U_{0.95} = (2.88 \cdot 10^{-6} \cdot X + 4.03 \cdot 10^{-6})$	MK-08.87.20
	ния	от 100 мВ до 1 В	·к) В U _{0.95} = (1,73·10 ⁻⁶ ·X+0,35·10 ⁻⁶ ·к) В	«Калибраторы напряжения. Методика калибров-
		от 1 В до 10 В	$U_{0.95} = (0.58 \cdot 10^{-6} \cdot X + 0.058 \cdot 10^{-6} \cdot K) B$	тодика калиоров- ки»
		от 10 В до 100 В	$U_{0.95} = (2.88 \cdot 10^{-6} \cdot X + 0.35 \cdot 10^{-6} \cdot K) B$	
		от 100 В до 1000 В	$U_{0.95} = (2,88\cdot10^{-6}\cdot X + 0,12\cdot10^{-6}\cdot K)$ В где $X-$ значение измеренной величины, $\kappa-$ предел измерений $\Pi\Gamma\pm(0,0014\ 0,01)$ %	
54.5	Приборы для поверки вольтметров	от 0,1 мкВ до 100 мВ	$U_{0.95}$ = (2,88·10 ⁻⁶ ·X+4,3·10 ⁻⁶ ·к) мВ	МК-08.19.20 «Приборы для
		от 100 мВ до 1 В	$U_{0.95} = (1,73\cdot10^{-6}\cdot X + 0,35\cdot10^{-6} \cdot \kappa) \text{ мВ}$	поверки вольт- метров. Методика калибровки»
		от 1 В до 10 В	U _{0.95} = (0,58·10 ⁻⁶ ·X+0,058·10 ⁻⁶ ·к) В	
		от 10 В до 100 В	$U_{0.95} = (2.88 \cdot 10^{-6} \cdot X + 0.35 \cdot 10^{-6})$	

		·к) B	
	от 100 В до 1000 В	$U_{0.95} = (2,88 \cdot 10^{-6} \cdot X + 0,12 \cdot 10^{-6} \cdot K) B$	
Установки измерительные постоянного тока	от 100 мкВ до 100 мВ от 100 мВ до 1000 В	$U_{0.95} = (0,00014 \cdot X + 5,8 \cdot \kappa) B$	МК-08.99.20 «Установки из-
		величины, к – единица младше-	мерительные постоянного то-
		$\Pi\Gamma \pm (0,0010,02)$ %	ка. Методика калибровки»
Установки потенцио-	от 10 ⁻⁶ до 10 А	$U_{0.95} = 0.012 \%$	MK-08.102.20
метрические	от 2·10⁻¹ до 6 ·10² В	111 ± (0,010,035) %	«Установки по- тенциометриче-
			ские. Методика калибровки»
Вольтметры универ-	от 10 мВ до 330 мВ	$U_{0.95} = (69 \cdot 10^{-6} \cdot X + 3,45 \cdot 10^{-3})$	MK-08.13.20
сальные цифровые	от 0,3 В до 3,3 В	$U_{0.95} = (57.5 \cdot 10^{-6} \cdot X + 5.75 \cdot 10^{-6})$	«Амперметры и вольтметры уни-
	от 3,3 В до 33 В	$U_{0.95} = (57.5 \cdot 10^{-6} \cdot X + 57.5 \cdot 10^{-6})$	версальные цифровые, вольтмет-
	от 33 В до 330 В	$U_{0.95} = (63,3 \cdot 10^{-6} \cdot X + 575 \cdot 10^{-6})$ B	ры постоянного тока электрон-
	от $10^2 \mathrm{B}$ до $10^3 \mathrm{B}$	$U_{0.95} = (63,3 \cdot 10^{-6} \cdot X + 1725 \cdot 10^{-6})$ B	ные. Методика калибровки»
		где X – значение воспроизво- димой величины ПГ + (0.005 0.5) %	
Вольтметры постоянного тока электронные	от 0,1 мВ до 100 мВ	$U_{0.95} = (0.046 \cdot X + 11.5) \text{ мкВ}$	МК-08.13.20 «Амперметры и
1	от 100 мВ до 1 В	U _{0.95} = (23·X+11,5) мкВ	вольтметры универсальные цифровые, вольтмет-
	от 1 В до 10 В	$U_{0.95}$ = (11,5·X+46) мкВ	ры постоянного тока электрон-
	от 10 В до 100 В	U _{0.95} = (34,5·X+575) мкВ	ные. Методика калибровки»
	от 100 В до 600 В	$U_{0.95} = (0,035 \cdot X + 5,75) \text{ MB}$	
	от 600 В до 1000 В	$U_{0.95}$ = $(0,046\cdot X+5,75)$ мВ где X – безразмерная величина, численно равная значению калиброванного напряжения в мВ на пределе 100 мВ, в В на остальных пределах $\Pi\Gamma \pm (0,0210)$ %	
	ные постоянного тока Установки потенциометрические Вольтметры универсальные цифровые	Установки измерительные постоянного тока Установки потенциометрические Вольтметры универсальные цифровые от 10 мВ до 330 мВ от 3,3 В до 3,3 В от 3,3 В до 330 В от 102 В до 103 В от 102 В до 103 В от 100 мВ до 1 В от 1 В до 10 В от 10 В до 100 В от 100 В до 600 В от 600 В до 1000 В от 600 В до 1000 В	от 100 В до 1000 В От 100 В до 1000 В От 100 В до 1000 В От 100 МВ до 100 МВ От 100 МВ до 100 МВ От 100 МВ до 1000 В От 2.10-7 до 6 · 10² В От 3,3 В до 33 В От 3,3 В до 33 В От 3,3 В до 33 В От 10² В до 10³ В От 10² В до 10³ В От 10² В до 10 В От 10 МВ до 100 МВ От 10 В до 100 В От 10² В до 10 В От 10 В

		-		
54.10	Делители напряжения	от 1:10 до 10 ³ В	$U_{0.95} = 0.0012 \%$	MK-08.95.20
	постоянного тока		KT (0,0050,02)	«Делители
				напряжения по-
				стоянного тока.
				Методика калиб-
54.11	I/	от 10 ⁻⁷ до 10 ² В	II 0.00022.0/	ровки» МК-08.17.20
34.11	Компараторы напря- жений	01 10 до 10 в	U _{0.95} = 0,00023 % KT 0,0005	
	жении		K1 0,0003	«Компараторы напряжений. Ме-
				тодика калибров-
				ки»
				KII//
54.12	Компараторы для сли-	от 1,0100000 до	$U_{0.95} = 0,0013 \%$	MK-08.17.20
	чения нормальных	1,0199999 B	$\Pi\Gamma\pm0,2$ мк B	«Компараторы
	элементов	•	•	напряжений. Ме-
				тодика калибров-
				ки»
54.13	Потенциометры посто-	от 2⋅10-6 до 2,121111 В	$U_{0.95} = 0,0012 \%$	MK-08.88.20
	янного тока		KT (0,0010,005)	«Потенциометры
			KT (0,010,2)	постоянного тока.
				Методика калиб-
				ровки»
55 (Сполетра измороний си	HILTOKO 2×10-8 25 A B		
55.1	Амперметры перемен-		$U_{0.95} = (0.12 \cdot 10^{-2} \cdot X + 0.173 \cdot 10^{-3})$	
33.1	ного тока	01 2 M1 40 5,5 M1	MA	«Амперметры,
		от 3,3 мА до 33 мА	$U_{0.95} = (0.046 \cdot 10^{-2} \cdot X + 2.3 \cdot 10^{-3})$	вольтметры, ват-
		, <u>A</u>	мА	тметры. Методи-
		от 33 мА до 330 мА	$U_{0.95} = (0.046 \cdot 10^{-2} \cdot X + 23 \cdot 10^{-3})$	ка калибровки»
			мА	
		от 0,33 А до 1,1 А	$U_{0.95} = (0.058 \cdot 10^{-2} \cdot X + 115 \cdot 10^{-6})$	
			Α	
		от 1,1 А до 3 А	$U_{0.95} = (0.069 \cdot 10^{-2} \cdot X + 115 \cdot 10^{-6})$	
			A $U_{0.95} = (0.12 \cdot 10^{-2} \cdot X + 2300 \cdot 10^{-6})$	
		от 3 А до 11 А	$O_{0.95} = (0.12 \cdot 10^{-1} \text{A} + 2300 \cdot 10^{-3})$	
		11 4 20 4		
		от 11 А до 20 А	$U_{0.95} = (0,173 \cdot 10^{-2} \cdot X + 5750 \cdot 10^{-6}) \text{ A}$	
		om 40 vo 2 104 F	где X – значение воспроизводи-	
		от 40 до $2 \cdot 10^4$ Гц	мой величины	
			KT (0,14,0)	
55.2	Амперметры универ-	(10 ⁻⁶ 50) A	U _{0.95} = 0,0035 %	MK-08.13.20
33.2		(1050) A	$\Pi\Gamma \pm (0,0050,5) \%$	«Амперметры и
	сальные нифровые			
1	сальные цифровые	$(10^{-5}10^{3}) B$		вольтметры уни-
	сальные цифровые	$(10^{-5}10^3)$ B	$U_{0.95} = 0.0058 \%$	вольтметры универсальные циф-
	сальные цифровые			вольтметры универсальные цифровые, вольтмет-
	сальные цифровые	(10 ⁻⁴ 20) A	$U_{0.95} = 0.0058 \%$ $\Pi\Gamma \pm (0.0050.5) \%$ $U_{0.95} = 0.069 \%$	версальные циф-
	сальные цифровые	(10 ⁻⁴ 20) А (402·10 ⁴) Гц	$U_{0.95} = 0.0058 \%$ $\Pi\Gamma \pm (0.0050,5) \%$ $U_{0.95} = 0.069 \%$ $\Pi\Gamma \pm (0,10,5) \%$	версальные цифровые, вольтмет-
	сальные цифровые	(10 ⁻⁴ 20) A (402·10 ⁴) Γ _Ц (2050) A	$U_{0.95} = 0.0058 \%$ $\Pi\Gamma \pm (0.0050,5) \%$ $U_{0.95} = 0.069 \%$ $\Pi\Gamma \pm (0.10,5) \%$ $U_{0.95} = 0.035 \%$	версальные циф- ровые, вольтмет- ры постоянного
	сальные цифровые	(10 ⁻⁴ 20) А (402·10 ⁴) Гц	$U_{0.95} = 0.0058 \%$ $\Pi\Gamma \pm (0.0050,5) \%$ $U_{0.95} = 0.069 \%$ $\Pi\Gamma \pm (0,10,5) \%$	версальные цифровые, вольтметры постоянного тока электрон-
	сальные цифровые	(10 ⁻⁴ 20) А (402·10 ⁴) Гц (2050) А 50 Гц, 400 Гц	$\begin{array}{c} U_{0.95} = 0.0058 \ \% \\ \Pi\Gamma \pm (0.0050.5) \ \% \\ U_{0.95} = 0.069 \ \% \\ \Pi\Gamma \pm (0.10.5) \ \% \\ U_{0.95} = 0.035 \ \% \\ \Pi\Gamma \pm (0.10.5) \ \% \end{array}$	версальные цифровые, вольтметры постоянного тока электронные. Методика

	ного тока	50 Гц; 400 Гц	KT (0,14,0)	«Амперметры,
	noro roka	50 1 ц, 400 1 ц	(0,1 1,0)	вольтметры, ват-
				тметры. Методи-
				ка калибровки»
56	Средства измерений на	пряжения 0.0011000	В в диапазоне частот 10 ⁻² .	
56.1	Вольтметры универ-	от 1 мВ до 33 м		MK-08.13.20
	сальные цифровые	, ,	$\begin{array}{c} U_{0.95} = (1150 \cdot 10^{-6} \cdot X + 23 \cdot 10^{-3}) \\ \text{MB} \end{array}$	«Амперметры и
				вольтметры уни-
		от 33 мВ до 330 мВ	$U_{0.95} = (345 \cdot 10^{-6} \cdot X + 23 \cdot 10^{-3}) \text{ MB}$	версальные циф-
		0.22 D 2.2 D	V (0.45.10.6 V) (0.10.6) D	ровые, вольтмет-
		от 0,33 В до 3,3 В	$U_{0.95} = (345 \cdot 10^{-6} \cdot X + 69 \cdot 10^{-6}) B$	ры постоянного
		от 3,3 В до 33 В	U (245 10-6 V) (00 10-6) D	тока электрон-
		01 5,5 в до 55 в	$U_{0.95} = (345 \cdot 10^{-6} \cdot X + 690 \cdot 10^{-6}) B$	ныс. містодика
		от 33 В до 330 В	$U_{0.95} = (575 \cdot 10^{-6} \cdot X + 3450 \cdot 10^{-6})$	калибровки»
			В	
		от 330 B до 10^3 B	$U_{0.95} = (575 \cdot 10^{-6} \cdot X + 23 \cdot 10^{-3}) B$	
		20 105 E	где X – значение воспроизводи-	
		от 20 до 10^5 Гц	мой величины	
			$\Pi\Gamma \pm (0,10,5)$ %	
		<u> </u>		(TCD II)
57	пазоне частот 4020000		ги и коэффициента мощно	ости (КМ) в диа-
57.1	Ваттметры переменно-	от 10 ⁻² до 7,5·10 ³ Вт	$U_{0.95} = 0.023 \%$	MK-08.33.20
	го тока	от 40 до 2.10⁴ Гц	KT (0,14)	«Амперметры,
		01 40 до 2.10 1 ц		вольтметры, ват-
				тметры. Методи-
				ка калибровки»
		1 460 D		7.515.00.105.20
57.2	Вольтамперфазометры	от 1 до 460 В	$U_{0.95} = 0.035 \%$	MK-08.105.20
		от 0,1 до 10 А	$U_{0.95} = 0.023 \%$	«Вольтамперфа-
		50 Гц	$\Pi\Gamma\pm 1$ %	зометры. Мето-
		от -180 до 180 °	$U_{0.95} = 0.023 \%$	дика калибровки»
		01 -100 до 100	$\Pi\Gamma \pm 1 \%$	
		от 1 до 4600 Вт	$U_{0.95} = 0.046 \%$	
		01 1 до 1000 В1	$\Pi\Gamma \pm 3\%$	
		от 45 до 65 Гц	$U_{0.95} = 1,2 \cdot 10^{-7}$	
			$\Pi\Gamma \pm 0.1\%$	
58	Средства измерений элокВ	ектрического напряж	сения постоянного тока в	диапазоне 1800
58.1	Трансформаторы	от 3 до 36 кВ/100;	U _{0.95} = 0,12 %	MK-08.89.20
20.1	напряжения	01 5 до 30 кВ/100, 100:√3 В	KT (0,23)	«Трансформато-
		50 Гц	(0,=)	ры напряжения.
		~ ~ ~ ~		Методика калиб-
				ровки»
58.2	Трансформаторы	220:√3 кВ 110:√3 кВ	$U_{0.95} = 0.13 \%$	MK-08.89.20
	напряжения	$100:\sqrt{3} \text{ B}$	KT (0,5-3)	«Трансформато-
		50 Гц	(0,0 0)	ры напряжения.
		<i>э</i> отц		Методика калиб-
				ровки»
			1	L PODMIN

58.3	Киловольтметры	от 1 до 100 кВ 50 Гц	U _{0.95} = 0,17 % KT (14)	МК-08.100.20 «Киловольтмет- ры. Методика ка- либровки»
59	Средства измерений бо	льших постоянного и	переменного токов	
59.1	Шунты постоянного тока	от 0,01 до 7500 А	U _{0.95} = 0,00059 % KT 0,5	МК-08.09.20 «Шунты посто- янного тока. Ме- тодика калибров- ки»
59.2	Измерители тока короткого замыкания	от 10 до 1000 А	$\begin{array}{c} U_{0.95} = 0.23 \ \% \\ \Pi\Gamma \pm 10 \ \% \end{array}$	МК-08.106.20 «Измерители тока короткого замы-кания. Методика калибровки»
59.3	Клещи токоизмери- тельные	от 5 до 10 ³ А 50 Гц	U _{0.95} = 0,23 % KT (1,02,5)	МК-08.10.20 «Клещи токоиз- мерительные. Методика калиб- ровки»
60	Средства измерений эл	ектрической энергии	постоянного и перемен	ного токов
60.1	Счетчики электрической энергии индукционные однофазные и трехфазные	от 0,5 до 50 А от 100 до 600 В 50 Гц	U _{0.95} = 0,58 % KT 2,0	МК-08.90.20 «Счетчики электрической энергии индукционные, статические однофазные и трехфазные. Методика калибровки»
60.2	Счетчики электрической энергии переменного тока статические одно- и трехфазные	от 5.10 ⁻³ до 10 ² А от 57,7 до 127; от 220 до 380 В 50 Гц	U _{0.95} = 0,58 % KT (0,52,0)	МК-08.90.20 «Счетчики электрической энергии индукционные, статические однофазные и трехфазные. Методика калибровки»
60.3	Установки для поверки электросчетчиков статических	от 0,005 до 10 A от 49 до 420 В	U _{0.95} = 0,023 % KT 0,05	МК-08.103.20 «Установки для поверки электросчетчиков. Методика калибровки»
60.4	Установки для поверки электросчетчиков	от 0,5 до 50 A от 150 до 600 B	$U_{0.95} = 0.12 \%$ $\Pi\Gamma \pm 0.2 \%$	МК-08.103.20 «Установки для

1	,			
				поверки электро-
				счетчиков. Мето-
				дика калибровки»
60.5	Устройства сбора дан-	Накопление инфор-	$U_{0.95} = 1,2 \cdot 10^{-6}$	MK-08.108.20
	ных, контроллеры	мации в течение сутов	$\Pi\Gamma\pm0.1~\%$	«Устройства сбо-
		•		ра данных, кон-
				троллеры. Мето-
				дика калибровки»
				1
61	Средства измерений ко ного тока	эффициента и угла ма	асштабного преобразован	ия синусоидаль-
61.1	Трансформаторы тока	от 0,5 до 5·10⁴ А	$U_{0.95} = 0.013 \%$	MK-08.21.20
		50 Гц	KT (0,110)	«Трансформато-
		ЗОТЦ		ры тока. Методи-
				ка калибровки»
62			цвумя электрическими на	_
	диапазоне частот 10 ⁻²		<u></u>	
62.1	Измерители разности	от 5 Гц до 1000 МГц	$U_{0.95}=1,2\cdot10^{-7}$	MK-08.59.20
	фаз		$\Pi\Gamma \pm (520) \%$	«Измерители раз-
		от 0 до 360°	$U_{0.95} = 0.035^{\circ}$	ности фаз. Мето-
			$\Pi\Gamma \pm (0,021)^{\circ}$	дика калибровки»
		от 0 до 100 дБ	$U_{0.95} = (0,0023 + 0,00023 \cdot A)$ дБ, где A – разностное ослабление, дБ	
63	Charama waxanawwii an		$\Pi\Gamma \pm (0,10,7)$ дБ	
63.1	Средства измерений эл	от 10 ⁻³ до 10 ⁵ Ом	$U_{0.95} = 0.00082 \%$	MK-08.11.20
03.1	Меры электрического	отто дото ом	,	
	сопротивления одно-		KT (0,010,05)	«Меры электри-
	значные			ческого сопро-
				тивления одно-
				значные, катушки
				электрического
				сопротивления.
				Методика калиб-
				ровки»
63.2	Manua Distantiviasiona	от 10 ⁵ до 10 ⁸ Ом	H _{0.05} = 0.00002 n/	MV 00 112 20
03.2	Меры электрического	от то до то ом	$U_{0.95} = 0.00082 \%$	МК-08.112.20
	сопротивления одно-		KT (0,010,05)	«Меры электри-
	значные			ческого сопро-
				тивления одно-
				значные. Мето-
				дика калибровки»
63.3	Меры электрического	от 10 ⁻³ до 10 ⁵ Ом	$U_{0.95} = 0.00082 \%$	MK-08.91.20
05.5	сопротивления много-	0110 до 10 ОМ	KT (0,010,2)	«Меры электри-
	значные		(0,010,2)	ческого сопро-
	SHA HIDIO			тивления много-
				значные. Мето-
				дика калибровки»
63.4	Меры электрического	от 10 ⁵ до 10 ⁹ Ом	$U_{0.95} = 0,012 \%$	MK-08.113.20
	сопротивления много-		KT (0,050,2)	«Меры электри-
	значные			ческого сопро-
				тивления много-

дика калибровки»
дика калиоровки//
MK-08.107.20
5) % «Измерители
электрического сопротивления
(xxxdmanxxa) Ma
тодика калибров-
ки»
% МК-08.97.20
% «Измерители
электрического % сопротивления,
% сопротивления, омметры. Мето-
дика калибровки»
)
6
% MK-08.98.20
% «Мосты постоян- ного тока. Мето-
) дика калибровки»
%
% МК-08.38.20
) % «Измерители им-
митанса, мосты переменного тока
(измерители L, C,
R). Методика ка-
либровки»
N. 112 00 02 20
% MK-08.92.20 % «Меры индук-
% «Меры индук- тивности и вза-
имной индуктив-
ности. Методика
калибровки»
% MK-08.38.20
) % «Измерители им-
митанса, мосты
переменного тока
(измерители L, C,
R). Методика ка- либровки»
NATE OO 110 20
% MK-08.110.20
% «Меры электрической емкости.
Методика калиб-
ровки»

65.2	Мости напомочного	10-3 4 103 *	$U_{0.95} = 0.023 \%$	MK-08.38.20
03.2	Мосты переменного тока, измерители L, C,	от 10^{-3} до $4 \cdot 10^3$ пФ	$\Pi\Gamma \pm (0,15)$ %	«Измерители им-
	R		111 ± (0,13) /0	митанса, мосты
	K	от $5 \cdot 10^3$ до 10^6 пФ	$U_{0.95} = 0.12 \%$	переменного тока
		01 5-10 до 10 11Ф	$\Pi\Gamma \pm 0.15 \%$	(измерители L, C,
		от 10^6 до 10^8 п Φ	$U_{0.95} = 0.58 \%$	(измерители E, e, R). Методика ка-
		01 10 до 10 пФ	$\Pi\Gamma \pm 1,5\%$	либровки»
		от 10^2 до 10^3 мк Φ	$U_{0.95} = 0.12 \%$	1
			$\Pi\Gamma \pm 0.3\%$	
		от 10^3 до 10^4 мк Φ	$U_{0.95} = 0.58 \%$	
		от 12 до 10^6 Γ ц	$\Pi\Gamma\pm1,5~\%$	
66	Средства измерений по	стоянного магнитного	о потока, напряженності	и магнитного по-
	ля, магнитных свойств			
66.1	Средства измерений	от 0,5 до 700 А/см	$U_{0.95} = 2,9 \%$	MK-08.109.20
	параметров электриче-		$\Pi\Gamma \pm (1045)$ %	«Средства изме-
	ского и магнитного по-			рений параметров
	лей			постоянного маг-
				нитного поля.
				Методика калиб-
				ровки»
67	Средства измерений ма	титной инпукции м		
67.1	Средства измерений	от 5 до 5000 нТл	$U_{0.95} = 5.8 \%$	MK-08.116.20
07.1	параметров электриче-	от 0,005 до 400 кГц	$\Pi\Gamma \pm (1045) \%$	«Средства изме-
	ского и магнитного по-	1,222,1		рений параметров
	лей			магнитного поля
				в диапазоне ча-
				стот от 0,005 до
				400 кГц. Методи-
				ка калибровки»
67.2	Средства измерений	от 0,1 до 2000 А/м	U _{0.95} = 5,8 %	MK-08.117.20
07.2	параметров электриче-	50 Гц	$\Pi\Gamma \pm (1045) \%$	«Средства изме-
	ского и магнитного	30 Г Ц	111 ± (1043) /0	рений параметров
	полей			магнитного поля
				промышленной
				частоты. Методи-
				ка калибровки»
68	Прочие средства измер) (TA 00 4 : : : : : : : : : : : : : : : : :
68.1	Средства измерений	от 0,5 до 2000 В/м	$U_{0.95} = 5.8 \%$	MK-08.114.20
	параметров электри-	от 0,005 до 400 кГц	$\Pi\Gamma \pm (1045) \%$	«Средства изме-
	ческого и магнитно-			рений параметров
	го полей			электрического
				поля в диапазоне
				частот от 0,005 до 400 кГц. Методи-
				ка калибровки»
		от 0,1 до 100 кВ/м	$U_{0.95} = 5.8 \%$	мк-08.115.20
		50 Гц	$\Pi\Gamma \pm (1045) \%$	«Средства изме-
		<i>э</i> отц	111 ± (1073) /0	рений параметров
				электрического
				поля промыш-
•	'	· ·	•	

68.2	Установки для поверки и градуировки элек-	от 0,3 до 1000 кВ/м от 0,15 до 10 ³ В от 0,1 до 30 А	$U_{0.95} = 5.8 \%$ $\Pi\Gamma \pm (545) \%$ $U_{0.95} = 0.014 \%$ $K\Gamma < 2 \%$	ленной частоты. Методика калибровки» МК-08.23.20 «Измерители напряженности электростатического поля. Методика калибровки» МК-08.93.20 «Установки для
	троизмерительных приборов	от 0,5 до 10 ³ В от 0,1 до 300 А 50 Гц		поверки и граду- ировки электро- измерительных
				приборов. Мето- дика калибровки»
РАДИ	ОТЕХНИЧЕСКИЕ И Р.	АДИОЭЛЕКТРОННЬ		дика казторовки
	Импульсные генератор			
69.1	Генераторы импуль- сов измерительные	от 1 мВ до 100 мВ от 100 мВ до 10 В	$U_{0.95} = (5,75 \cdot 10^{-6} \cdot \text{U} + 3,45 \cdot 10^{-7})$ B $U_{0.95} = (4,60 \cdot 10^{-6} \cdot \text{U} + 3,45 \cdot 10^{-7})$	«Генераторы
		от 10 В до 100 В	B $U_{0.95} = (4,60 \cdot 10^{-6} \cdot U + 5,75 \cdot 10^{-7})$	мерительные. Методика ка- либровки»
		01 10 В до 100 В	$_{\rm C0.95}^{\rm C0.95} = (4,00{\rm Ho}^{-1}{\rm G}^{-1}{\rm Ho}^{-1}{\rm Ho}^{-1$	лиоровки»
		от 0,1 до 1000 мкс	$U_{0.95}=1,2\cdot 10^{-7}$ $\Pi\Gamma \pm (0,00120) \%$	
		от 0,1 Гц до 200 МГц	$U_{0.95} = 1,2 \cdot 10^{-7}$ $\Pi\Gamma \pm (0,00120) \%$	
69.2	Генераторы испытательных импульсов, генераторы перепада напряжения	от 10 мВ до 100 В	$U_{0.95} = (0,00014 \cdot X + 5,75 \cdot \kappa) B,$ где $X -$ значение измеренной величины, $\kappa -$ единица младшего разряда;	МК-08.47.20 «Генераторы испытательных импульсов, генераторы перепада
		от 10 ⁻⁹ до 10 ⁻⁶ с	$\Pi\Gamma \pm (110) \%$ $U_{0.95} = 1,2 \cdot 10^{-7}$ $\Pi\Gamma \pm (0,0110) \%$	напряжения. Методика калибровки»
		от 0,1 Гц до 1000 кГц	$U_{0.95}=1,2\cdot 10^{-7}$ $\Pi\Gamma \pm (0,0110)\%$	
69.3	Осциллографы одно- канальные и многока- нальные	от 0 до 400 МГц	111 + (0,0110) /0	МК-08.36.20 «Осциллографы. Методика калиб-
	Tambilioto	от 10 мкВ до 300 В	$U_{0.95} = (0,00029 \cdot U_{\text{вых}} + 29 \cdot 10^{-6})$ В, где $\mathbf{U}_{\text{вых}}$ – установленное напряжение, В	ровки»

Ī	1	•	1	1
			$\Pi\Gamma \pm (1,010) \%$	
		от 0,1 мкс до 5 с	$U_{0.95} = 0.12 \%$	
			$\Pi\Gamma \pm (1,010) \%$	
69.4	Осциллографы запо-	от 0 до 50 МГц		MK-08.68.20
09.4	= =	от о до зо ми ц		
	минающие	от 1 мВ до 20 В	$U_{0.95} = (0.00029 \cdot U_{\text{BMX}} + 29 \cdot$	«Осциллографы
		01 1 МВ Д0 20 В	10^{-6}) В, где $U_{\text{вых}}$ – установлен-	запоминающие. Методика калиб-
			ное напряжение, В	
			$\Pi\Gamma \pm (3,010) \%$	ровки»
		от 0,1 мкс до 2 с	$U_{0.95} = 0.12 \%$	
			$\Pi\Gamma \pm (3,010) \%$	
69.5	Осциллографы стро-	от 0 до 17,85 ГГц		MK-08.69.20
	боскопические			«Осциллографы
		от 5 мВ до 1 В	U _{0.95} =(0,017·U) B, где U –	стробоскопиче-
			амплитуда импульсов	ские. Методика
			$\Pi\Gamma \pm 4\%$	калибровки»
		от 0,1 не до 5 мкс	$U_{0.95} = 0.58 \%$	
=0		<u> </u>	$\Pi\Gamma \pm (210) \%$	
70	Средства измерений пр		1 2 10-7	MIC 00 51 20
70.1	Генераторы уровня	от 0,2 до 2100 кГц	$U_{0.95} = 1.2 \cdot 10^{-7}$	MK-08.51.20
		от 60 то 10 тГ	$\Pi\Gamma \pm (0,51) \%$ $U_{0.95} = (0,0023 + 0,00023 \cdot$	«Генераторы
		от -60 до 10 дБ	A) дБ, где A – разностное	уровня. Методика
			ослабление, дБ	калибровки»
			$\Pi\Gamma \pm (0,31)$ дБ	
70.2	Измерители уровня			MK-08.60.20
		от -100 до 20 дБ	$U_{0.95} = (0.0023 + 0.00023)$	«Измерители
		от 0,2 до 2100 кГц	А) дБ, где А – разностное	уровня. Методика
			ослабление, дБ $\Pi\Gamma \pm (0,31)$ дБ	калибровки»
			П = (0,51) дв	
70.3	Псофометры	от -90 до 20 дБ	$U_{0.95} = (0.12 + 0.012 \cdot A)$ дБ,	MK-08.73.20
		от 0,02 до 20 кГц	где А – разностное ослабление,	«Псофометры.
			дБ	Методика калиб-
			$\Pi\Gamma \pm (0,31)$ дБ	ровки»
70.4		1.5 (5)45	10 10 7	NATC 00 52 20
70.4	Генераторы шума	от 1 Гц до 6,5 МГц	$U_{0.95} = 1,2 \cdot 10^{-7}$	MK-08.52.20
		от 0,1 мВ до 3 В	$\Pi\Gamma \pm (45) \%$	«Генераторы шу-
				ма. Методика ка-
				либровки»
70.5	Иомарита туу уула түү	or 0 == 200 m.	$U_{0.95} = 1.2 \cdot 10^{-7}$	MV 00 62 20
70.5	Измерители неодно-	от 0 до 300 км		МК-08.63.20
	родностей линий		111 ± 1 /0	«Измеритель не- однородностей
				линий. Методика
				калибровки»
				калиоровки»
70.6	Формирователи теле-	от 1 до 10800 с	$U_{0.95} = 4.2 \cdot 10^{-10}$	MK-08.83.20
, 0.0	фонных соединений	от 1 до 10000 с	$\Pi\Gamma \pm 0.3$ c	«Формирователи
	«Призма-8», приборы		- 0,5 0	телефонных со-
	поверки таксофонов			единений, прибо-
	«Комета-8»			ры поверки
		от 10 до 600 с	$U_{0.95} = 4,2 \cdot 10^{-10}$	таксофонов. Ме-
		• •	$\Pi\Gamma \pm 0.15\%$	тодика калибров-
	•		<u> </u>	

				ки»
71	Средства измерений дл блоки питания	я исследования парам	метров электронных схем	и элементов;
71.1	Измерители параметров полупроводниковых приборов и интегральных схем	от 1 мкА до 10 мА от 10 мА до 100 мА от 100 мВ до 500 В	$U_{0.95}$ = $(0,0006\cdot X+17,3\cdot \kappa)$ мА $U_{0.95}$ = $(0,0006\cdot X+5,8\cdot \kappa)$ мА $\Pi\Gamma\pm(210)$ % $U_{0.95}$ = $(0,00014\cdot X+5,8\cdot \kappa)$ В где $X-$ значение измеренной величины, $\kappa-$ единица младшего разряда; $\Pi\Gamma\pm(210)$ %	МК-08.58.20 «Измерители параметров полупроводниковых приборов и интегральных схем. Методика калибровки»
71.2	Источники постоян-	от 1 мВ до 100 мВ	$U_{0.95}$ = (0,00014·X+9,2·к) мВ	МК-08.08.20 «Источники по-
	ного напряжения	от 100 мВ до 1000 В	$U_{0.95}$ = (0,00014·X+5,8· κ) B $\Pi\Gamma \pm$ (0,0530,0) %	стоянного напря- жения. Методика
		от 1 мА до 10 мА	$U_{0.95} = (0,00058 \cdot X + 17,3 \cdot \kappa) \text{ MA}$	калибровки»
		от 10 мА до 100 мА	$U_{0.95}$ = $(0,00058\cdot X+5,8\cdot \kappa)$ mA	
		от 100 мА до 10 А	$U_{0.95}$ = (0,0023·X+5,8·к) А где X – значение измеренной величины, к – единица младшего разряда	
		от 10 А до 160 А	$U_{0.95}{=}\;(0,007{\cdot}X/R_{\scriptscriptstyle 3})\;\text{мA}$ где X – значение измеренной величины, мB, Rэ – номинальное значение эталонной меры, Ом $\Pi\Gamma \pm (0,130,0)\;\%$	
72			дной модуляции ВЧ колеб	
72.1	Измерители коэффициента амплитудной модуляции	от 0,1 до 100 % F _н от 0,1 до 425 МГц F _м от 0,03 до 200 кГц	$egin{align*} \mathbf{U_{0.95}} &= (0,0059 \cdot \mathrm{M_x} + 1,15 \cdot \mathrm{M_{III}}) \ \%, \ \mathrm{гдe} \ \mathrm{M_x} - \mathrm{yctahhobs} \mathrm{neh-hoe} \ \mathrm{sharehue} \ \mathrm{kos} \mathrm{\varphi} \mathrm{\varphi} \mathrm{uuuehta} \ \mathrm{AM,\%}; \ \mathrm{M_{III}} - \mathrm{pacuethas} \ \mathrm{norpe} \mathrm{emhoctb} \ \mathrm{sactoring} \ \mathrm{cuet} \ \mathrm{паразитhoй} \ \mathrm{шумовой} \ \mathrm{мo-дуляции,\%} \ \mathrm{\Pi\Gamma} \pm (25) \ \% \ \end{split}$	МК-08.56.20 «Измерители ко- эффициента амплитудной мо- дуляции. Методика калибровки»
73	1 МГц		ных искажений в диапазо	
73.1	Измерители нелиней- ных искажений	от 0,03 до 100 % от 20 Гц до 200 кГц	$U_{0.95} = (0.012 \cdot K_{\Gamma} + 0.0069)$ %, где K_{Γ} - устанновленный коэффициент гармоник, $\%$ $\Pi\Gamma \pm (210)$ %	МК-08.27.20 «Измерители нелинейных искажений. Методика калибровки», МК-08.32.20 «Измерители нелинейных искажений. Методика

				калибровки»
73.2	Анализаторы спектра	от 0 до 37,5 ГГц от 0 до 100 дБ	$U_{0.95} = 4,2 \cdot 10^{-10}$ $\Pi\Gamma \pm (140) \%$ $U_{0.95} = 0,0023 \; \mathrm{дБ}$	МК-08.42.20 «Анализаторы спектра. Методи-ка калибровки»
		01 0 A0 100 AB	$\Pi\Gamma \pm (0,51,5)$ дБ	
74	Средства измерений де	виации частоты	() / / / /	
74.1	Измерители коэффи-	от 0,1 до 100 %	$U_{0.95} = (A_0 \cdot 10^{-2} \cdot \Delta f + \Delta f_{III})$	MK-08.57.20
	циента девиации частоты	от 100 Гц до 1 МГц Гн от 0,1 до 1000 МГц Гм от 0,03 до 200 кГц	Γ ц, где A_0 — множитель, отн. ед., Δf — значение девиации частоты ЧМ сигнала, Γ ц; $\Delta f_{\text{ш}}$ — частотный фон и шум сигналов, Γ ц $\Pi\Gamma \pm (25)$ %	«Измерители ко- эффициента де- виации частоты. Методика калиб- ровки»
74.2	Приборы для исследования АЧХ, генераторы качающейся частоты	от 20 Гц до 17,44 ГГц от 0 до 100 дБ	$U_{0.95} = 4,2 \cdot 10^{-10}$ $\Pi\Gamma \pm (0,110)$ % $U_{0.95} = 0,12 + 0,012 \cdot A, дБ$ $\Pi\Gamma \pm (0,51,5) дБ$	МК-08.70.20 «Приборы для исследования АЧХ, генераторы качающейся частоты. Методика калибровки»
75	Средства измерений эл	ектрического напряж	ения при частотах до 3000) МГц
75.1	Вольтметры диодные компенсационные	от 10 мВ до 10 В от 10 В до 100 В от 20 Гц до 1000 МГц	$\overline{U_{\rm H}}$) %, где U_k – конечное значение поддиапазона, В; $U_{\rm H}$ – номинальное значение уставленного выходного напряжения, В. $\Pi\Gamma \pm (0,212)$ %	
75.2	Установки для поверки электронных вольтметров переменного напряжения	от 10 мкВ до 1000 В от 10 Гц до 1000 МГц	$U_{0.95} = (1,2 \cdot 10^{-3} \cdot U + 1,3 \cdot 10^{-6})$ В, где U – измеренное значение напряжения, В; $\Pi\Gamma \pm (0,021) \%$ $U_{0.95} = 1,2 \cdot 10^{-7}$ $\Pi\Gamma \pm (0,16) \%$	МК-08.30.20 «Приборы для поверки вольт-метров переменного тока. Методика калибровки»
75.3	Вольтметры электронные переменного тока аналоговые	10 мкВ300 В от 10 Гц до 1000 МГц	$U_{0.95}$ = 0,023 % $U_{0.95}$ = 0,0013 % $\Pi\Gamma \pm (0,525)$ %	МК-08.28.20 «Вольтметры переменного тока аналоговые. Методика калибровки»
75.4	Усилители измери- тельные	от 5 мкВ до 1 В от 20 Гц до 200 кГц	$U_{0.95} = \left(0.023 + \frac{0.0023 \cdot U_k + 0.0012}{U_H}\right)$ %, где U_k —	МК-08.26.20 «Усилители из- мерительные.

вначение поддиапазоном методика калибноминальное значеня ровки» пряжения, В.
T ± (325) %
$_{0.95}$ = 1,2·10 ⁻⁷ MK-08.65.20 ПГ ± 20 % «Калибраторы
$_{0.95}$ = 1,2·10 ⁻⁷ импульсного напряжения. Методика калибровки»
(0,00014 · X + 5,75 · к) В,
начение измеренной κ — единица младше-го разряда; $\pm (0,51) \%$
$(1,04 \cdot 10^{-5} \cdot U + 3,5) \qquad MK-08.45.20$
· 10 ⁻⁷) % «Вольтметры электронные им-
$(9.2 \cdot 10^{-6} \cdot U + 3.5)$ пульсного
· 10 ⁻⁷) % напряжения. Методика калибров-
$(9,2 \cdot 10^{-6} \cdot \text{U} + 5,8)$ тодика калиоров-
$(1,2\cdot 10^{-5}\cdot U+3,5\cdot $
, где U – измеренное
ние напряжения, В
± (0,525) %
7 _{0.95} = 0,6 % MK-08.41.20 «Вольтметры се-
$_{0.95} = (0.023 +$ лективные. Ме-
$(23\cdot U_k+0,0012)$ %, тодика калибров-
конечное значение азона, В; $U_{\rm H}$ — номиначение уставленного ого напряжения, В. $1\pm(615)\%$
$(3.23 + 0.0058 \cdot Q)$ %, начение добротности меры, Ом (3.25) % (425) % $(4$
KII//
(0,0023 + 0,00023 · MK-08.81.20
где A – разностное иль иль и для иль
поверки средств измерения ослабления. Методика

				калибровки»
77.2	Меры ослабления, аттенюаторы, магазины затухания	от 0 до 90 дБ от 100 кГц до 17,44 ГГц	$U_{0.95} = 0.058 \; дБ$ $\Pi\Gamma \pm (0.52) \; дБ$	МК-08.29.20 «Меры ослабления, аттенюаторы, магазины затухания. Методика калибровки»
78	Средства измерений мо в диапазоне частот 37,5		итных колебаний в волн	оводных трактах
78.1	Мосты термисторные	75, 100, 240, 400 Ом	U _{0.95} = 0,00025 %	MK-08.67.20
70.1	Wieerin Tepanierepanie	от 1 мкВт до 10 мВт	$\Pi\Gamma \pm 0.1~\%$ $U_{0.95} = (1.2 \cdot 10^{-5} \cdot U + 3.5 \cdot 10^{-5})$ В, где $U -$ значение напряжения, В $\Pi\Gamma \pm (0.52.8)~\%$ (без термопреобразователей)	«Мосты терми- сторные. Мето- дика калибровки»
			,	
ИЗМЕ	РЕНИЯ АКУСТИЧЕСЬ	кие величин		
79	Средства измерений зв		эздушной среде	
79.1	Калибраторы на фик-	от 100 до 1000 Гц		MK-08.05.20
	сированных частотах и пистонфоны	от 94 до 125 дБ	$U_{0.95} = 0.12 \ дБ$ ПГ ± $(0,20,5)$ дБ	«Акустические калибраторы и пистофоны. Методика калибров-
79.2	Шулкомору с компом	от 20 до 140 дБ	U _{0.95} = 0,12 дБ	ки» МК-08.35.20
19.2	Шумомеры с конден- саторным микрофоном	01 20 до 140 дв	$\Pi\Gamma \pm (0.71.5)$ дБ	«Шумомеры. Ме-
		om 20 vo 12 5 10 ³ Fy		тодика калибров-
50.0		от 20 до 12,5⋅10 ³ Гц		ки»
79.3	Аудиометры, системы для испытаний слуховых аппаратов FONIX 8000	от 125 до 20·10 ³ Гц от -10 до 120 дБ	$U_{0.95} = 0.8 \ дБ$ $\Pi\Gamma \pm (0.77,0) \ дБ$	МК-08.06.20 «Аудиометры. Методика калибровки»
		от 125 до 10·10³ Гц	U _{0.95} = 1,2 дБ	ровини
		от 50 до 140 дБ	$\Pi\Gamma \pm (1,47,0)$ дБ	
79.4	Фильтры октавные,	от 2 до 200·10 ³ Гц	U _{0.95} = 0,23 дБ	MK-08.82.20
/ / / -	третьоктавные 2,3 кл	01 2 до 200-10 -1 ц	$\Pi\Gamma \pm (0,30,5)$ дБ	«Фильтры октав-
	TP TB OKTUBILITY 2,5 Kur			ные, третьоктав-
				ные. Методика
				калибровки»
79.5	Калибраторы на фик-	(1001000) Гц	$U_{0,95} = 0.12$ дБ	MK-08.120.20
	сированной частоте	94, 118, 120 дБ	$\Pi\Gamma \pm (0,30,5)$ дБ	«Калибраторы на
				фиксированной
				частоте. Методи-
00	C			ка калибровки»
80	Средства измерений ви		U _{0.95} = 0,58 %	MV 00 42 20
80.1	Виброустановки пове-	от 1·10 ⁻¹ до 1·10 ⁴ м/с ²	$\Pi\Gamma \pm (110) \%$	МК-08.43.20
	рочные 2 разряда	от 5 до 5000 Гц	111 + (110) /0	«Виброустановки поверочные. Методика калибров-

				ки»
80.2	Виброметры и вибро- измерительные преоб- разователи, приборы виброизмерительные со спектральным анали- зом, датчики виброско- рости, датчики вибро- ускорения, датчики виброперемещения, виброизмерительные	$(1\cdot10^{-7}1)$ м $(10^{-6}10)$ м/с $(10^{-5}10^{5})$ м/с ² $(0,52\cdot10^{4})$ Гц	$U_{0,95} = 3.5 \%$ $\Pi\Gamma \pm (420) \%$ $U_{0,95} = 3.5 \%$ $\Pi\Gamma \pm (420) \%$ $U_{0,95} = 4.6 \%$ $\Pi\Gamma \pm (520) \%$	МК-08.04.20 «Виброизмери- тельные преобра- зователи. Мето- дика калибровки»
ОПТИ	каналы, акселерометры КО-ФИЗИЧЕСКИЕ ИЗ	вмерения		
81			ерывного и импульсного	излучения
81.1	Люксметры	от 1 до 200000 лк	$U_{0.95} = 2.9 \%$ $\Pi\Gamma \pm (610) \%$	МК-01.07.18 «Методика калибровки приборов с каналом измерения освещенности в видимой области
81.2	Яркомеры	от 10 до 200000 кд/м 2	$U_{0.95} = 3.5 \%$ $\Pi\Gamma \pm 10 \%$	спектра» МК-01.83.21 «Методика ка- либровки ярко- меров»
81.3	Пульсметры и каналы пульсации многока- нальных радиометров	от 1 до 100 %	$U_{0.95} = 3.5 \%$ $\Pi\Gamma \pm 10 \%$	мсрови МК-01.94.21 «Методика ка- либровки каналов пульсации»
82	Сполетра измараний ка	ANTIHUT HEATS II WAAN	THUST UPOTHOCTH	
82.1	Средства измерений ко Фотоэлектроколори- метры, фотометры	ординат цвета и коор, КПР от 0,1 до 100 %	Динат цветности $U_{0.95} = 0.25 \%$ $\Pi\Gamma \pm (0.51.5) \%$	МК-01.84.21 «Методика ка- либровки фото- электроколори- метров»
				«Методика ка- либровки фото- метров»
82.2	Прибор для определения белизны муки	от 67 до 100 %	$U_{0.95} = 0.35\%$ $\Pi\Gamma \pm 1 \%$	МК-01.92.21 «Методика калибровки приборов для определения белизны муки»
82.3	Измерители коэффициента пропускания стекол	КПР от 2 до 100 %	$U_{0.95} = 0.29 \%$ $\Pi\Gamma \pm (25) \%$	МК-05.183.20 «Измерители ко- эффициента пропускания стекол. Методи-

				ка калибровки»
83	Спектрофотометры ИН	∟		1
83.1	Спектрометры атомно абсорбцион- ные, ИК-Фурье- спектрометры	от 0,01 до 100 % от 0,005 до 200 мг/дм ³	$U_{0.95} = 0.29 \%$ $\Pi\Gamma \pm (180) \%$ CKO $(2,050,0) \%$	МК-01.21.20 «Методика калибровки спектрометров атомно-
		от 0,0 до 2,5 Б	$U_{0.95} = 0.29 \%$ CKO $\pm 0.5 \%$	но- абсорбционных» МК-01.86.21 «Методика ка-
		от 53000 до 10 см ⁻¹	$U_{0.95}\!=\!0,\!58~\text{cm}^{\text{-}1}$ $\Pi\Gamma\pm(0,\!05\dots1,\!00)~\text{cm}^{\text{-}1}$	либровки спектрометров атомно- но- абсорбционных»
		от 119 до 900 нм	$U_{0.95}\!=\!0,\!58$ нм ПГ $\pm(0,\!3\dots\!1,\!5)$ нм	
		массовая доля элементов от 10 ⁻⁵ до 100 %	$U_{0.95} = 0.29 \%$ $\Pi\Gamma \pm (350) \%$	
		концентрация от 0,0001 до 20 %	CKO (0,1525,0) %	
		отношение сигнал/шум 10000:1		
84			ьных и редуцированных	коэффициентов
84.1	направленного пропус	кания от 186 до 2500 нм	$U_{0.95} = 0.25 \%$	MK-01.38.20
04.1	Спектрофотометры	КПР от 0 до 100 %	$\Pi\Gamma \pm (0,52,0)\%$	МК-01.38.20 «Методика ка- либровки спек-
		от -0,3 до 3,5 Б	$U_{0.95} = 0,007 \text{ B}$ $\Pi\Gamma \pm (0,010,02) \text{ B}$	трофотометров»
84.2	Фотометры пламенные	от 0,05 до 100 мг/л	$U_{0.95} = 1.1 \%$ $\Pi\Gamma \pm (0.051.5) \%$	МК-01.91.21 «Методика калибровки фотометров пламенных»
85	Средства измерений оп пускания и преломлен		атериалов, коэффициент	гов яркости, про-
85.1	Анализаторы мутности	от 0,1 до 100 мг/дм ³	$\begin{array}{c} U_{0.95} = 1,5 \; \% \\ \Pi\Gamma \pm 2 \; \% \end{array}$	МК-01.90.21 «Методика калибровки анализаторов мутности»
85.2	Денситометры	от 0,0 до 4,0 Б	$U_{0.95} = 0,0035 \text{ F}$ $\Pi\Gamma \pm (0,010,4) \text{ F}$ $U_{0.95} = 3,5 \%$ $\Pi\Gamma \pm (23) \%$	МК-01.95.21 «Методика ка- либровки денси- тометров»
85.3	Турбидофлуориметры	от 400 до 650 нм	$U_{0.95} = 1,5 \%$	MK-01.02.17

				T
		от 100 до 1000 ЕМФ	$\Pi\Gamma\pm20~\%$	«Методика ка-
			CKO 5 %	либровки турби-
				дофлуориметров»
85.4	Люминометры	от 0 до $2 \cdot 10^7$ имп/с	$U_{0.95} = 1,16 \%$	MK-01.96.21
	_		CKO (328) %	«Методика ка-
				либровки люми-
				нометров»
86	Спедства изменений по	і Эказателя препомленич	я твердых и жидких проз	•
86.1	Рефрактометры	от 1,2 до 2,0 n _D	$U_{0.95} = 2.0 \cdot 10^{-5} \text{ n}_{\text{D}}$	MK-01.27.20
00.1	Гефрактометры	01 1,2 <u>4</u> 0 2,0 Hg	$\Pi\Gamma \pm (6.10^{-5}2.10^{-4}) \text{ n}_{\text{D}}$	«Методика ка-
			III = (0 102 10) IID	либровки рефрак-
		от 0,0	$U_{0.95} = 0.02 \% BRIX$	тометров цифро-
		до 100,0 % BRIX	$\Pi\Gamma \pm 0.1$ % BRIX	
		до 100,0 % БКІХ	$111 \pm 0.1 \% \text{ BKIA}$	вых» МК-01.89.21
				«Методика ка-
				либровки рефрак-
				тометров лабора-
				торных»
87	Средства измерений уг			1
87.1	Поляриметры и саха-	от 0 до 360^{0}	$U_{0.95} = 0.0058^{0} S$	MK-01.30.20
	риметры лаборатор-	от -20 до 140 0 S	$\Pi\Gamma \pm 0.05^{0}$	«Методика ка-
	ные (визуальные)		$\Pi\Gamma \pm 0,1$ ⁰ S	либровки поля-
				риметров-
				сахариметров»
87.2	Полярископы-	от 0 до 550 нм	$U_{0.95} = 3,5 \text{ HM}$	MK-01.15.20
	поляриметры		$\Pi\Gamma\pm10$ нм	«Методика ка-
				либровки поляри-
				скопов-
				поляриметров»
				1 1
88	Средства измерений си	лы излучения и энерг	етической освещенности	непрерывного
	оптического излучения	-		· r·r
88.1	УФ-радиометры	от 0,001 до 20,0 Вт/м ²	$U_{0.95} = 3.5 \%$	MK-01.93.21
00.1	Готрыдаеметры	01 0,001 до 20,0 21 11	$\Pi\Gamma \pm (625)\%$	«Методика ка-
			111 =(020) 70	либровки УФ-
				радиометров»
				радиометров//
89	Диоптриметры, очкові	 По пиноті и призміт		1
89.1	Диоптриметры, очков	от -30 до 25 дптр	$U_{0.95} = 0.023$ дптр	MK-01.16.20
09.1	диоптримстры	01-30 до 23 дитр	$\Pi\Gamma \pm (0.060.25)$ дптр	«Методика ка-
			ти ± (0,000,23) дитр	
		ршист	II = 0.025	либровки
		ВПИ 6 срад	$U_{0.95} = 0.035$ срад	линзметров (ди-
			$\Pi\Gamma \pm (0,10,15)$ срад	оптриметров)»
00.2	II	20 20	TT 0.00#	MTC 04 400 24
89.2	Наборы пробных оч-	от – 20 до 20 дптр	$U_{0.95} = 0.035$ дптр	MK-01.109.21
	ковых линз и призм		$\Pi\Gamma \pm (0,060,25)$ дптр	«Методика ка-
				либровки набо-
				рыов пробных
				очковых линз и
				призм»
		от 1 до 15 срад	$U_{0.95}$ = 0,069 пр. дптр	

			$\Pi\Gamma \pm (0,120,50)$ срад	
		от 0,096 до 4,800 мм	$U_{0.95} = 0.046 \text{ mm}$ $\Pi\Gamma \pm (0.0030,350) \text{ mm}$	
СРЕД				
90	Средства измерений эл	ектродиагностически	e	
90.1	Электрокардиографы, электрокардиоскопы, электрокардиоанали-заторы	от 0,03 до 10 мВ до 1 до 400 Гц	$\begin{array}{c} U_{0.95} \! = \! 0,\!0029 \; \text{MB} \\ \Pi\Gamma \pm (520) \; \% \\ U_{0.95} \! = \! 0,\!12 \; \% \\ \Pi\Gamma \pm (25) \; \% \end{array}$	МК-01.112.21 «Методика ка- либровки элек- трокардиогра-
				фов» МК-01.113.21 «Методика ка- либровки элек- трокардиоанали- заторов»
90.2	Мониторы медицин- ские, мониторы при- кроватные реанимато- лога	от 0,03 до 10 мВ	$U_{0.95} = 1,16 \%$ $\Pi\Gamma \pm (520) \%$	МК-01.08.18 «Методика калибровки канала измерения давле-
		от 1 до 400 Гц	$U_{0.95} = 0.58 \%$ $\Pi\Gamma \pm 5 \%$	ния в манжете медицинских мониторов».
		от 10 до 5000 мкВ	$U_{0.95} = 1,16 \%$ $\Pi\Gamma \pm (1020) \%$	МК-01.114.21 «Методика ка- либровки мони-
		от 0,25 до 60 Гц	$U_{0.95} = 0,58 \% \ \Pi\Gamma \pm 5 \%$	торов медицин- ских»
		канал SpO ₂ от 10 до 100 %	$U_{0.95} = 0.58 \%$ $\Pi\Gamma \pm (25) \%$	
		канал ЧП от 15 до 350 мин ⁻¹	$U_{0.95} = 0,23 \text{ мин}^{-1}$ $\Pi\Gamma \pm 12 \text{ мин}^{-1}$	
		канал ЧСС от 0 до 350 мин ⁻¹	$U_{0.95} = 0,23 \; \text{мин}^{-1} \ \Pi\Gamma \pm (12) \; \text{мин}^{-1}$	
		канал температуры от 0 до 50 °C	$U_{0.95} = 0.023 ^{\rm o}{ m C}$ $\Pi\Gamma \pm 0.1 ^{\rm o}{ m C}$	
		модуль инвазивного измерения движения от 101 до 300 мм рт. ст.	$U_{0.95}\!=\!0,\!58$ мм рт. ст $\Pi\Gamma\pm2~\%$	
		канал АД от 0 до 300 мм рт. ст.	$U_{0.95} = 0,58$ мм рт. ст $\Pi\Gamma \pm 3$ мм рт. ст.	
		канал ЧД от 0 до 160 мин ⁻¹	$U_{0.95} = 0,23 \; \text{мин}^{-1}$ $\Pi\Gamma \pm 3 \; \text{мин}^{-1}$	

		модуль газоанализа дыхательной смеси CO_2 от 0 до 15 % O_2 от 0 до100 %	$U_{0.95} = 0,016 \%$ $\Pi\Gamma \pm (0,26) \%$ $\Pi\Gamma \pm 2 \%$	
90.3	Электроэнцефалографы, электроэнцефалоскопы и электроэнцефалоанализаторы	от 10 до 8000 мкВ от 0,25 до 60 Гц	$U_{0.95} = 1,16 \%$ $\Pi\Gamma \pm (725) \%$ $U_{0.95} = 0,58 \%$ $\Pi\Gamma \pm 5 \%$	МК-01.115.21 «Методика калибровки электроэнцефалографов, электроэнцефалоскопов и электроэнцефалоанализаторов»
90.4	Электромиографы, электромио- анализаторы	от 0,005 до 50 мВ от 1,0 до 25,5 мс	$\begin{array}{c} U_{0.95} = 1,16~\% \\ \Pi\Gamma \pm (515)~\% \\ U_{0.95} = 1,16~\% \\ \Pi\Gamma \pm 20~\% \end{array}$	МК-01.116.21 «Методика калибровки электромиографов, электромиоанализаторов»
90.5	Реографы, реоплетиз-мографы и реоанализаторы.	от 0,03 до 5 мВ от 2,5 до 500 Ом от 0,02 до 1 Ом от 10 ⁻² до 100 Гц	$U_{0.95} = 1,16 \%$ $\Pi\Gamma \pm 5 \%$ $U_{0.95} = 2,3 \%$ $\Pi\Gamma \pm (515) \%$ $U_{0.95} = 0,58 \%$ $\Pi\Gamma \pm (510) \%$ $U_{0.95} = 0,58 \%$ $\Pi\Gamma \pm 10 \%$	МК-01.117.21 «Методика калибровки реографов, реоплетизмографов и реоанализаторов»
91	Средства анализа биол	огических сред		
91.1	Гемоглобинометры	от 0 до 360 г/л от 0 до 1,2 Б	$U_{0.95} = 5.0 \%$ $\Pi\Gamma \pm 2 \%$ $U_{0.95} = 0,0070 \text{ B}$ $\Pi\Gamma \pm (0,010,02) \text{ B}$ $\Pi\Gamma \pm 5 \%$	МК-01.124.21 «Методика калибровки гемоглобинометров»
91.2	Анализаторы гемато-логические	Гемоглобин от 0 до 250 г/л Эритроциты от 0,0 до 8,0·10 ⁶ ед/мкл	$U_{0.95} = 5 \%$ $\Pi\Gamma \pm 10 \%$ $U_{0.95} = 7 \%$ $\Pi\Gamma \pm 15 \%$	МК-01.125.21 «Методика калибровки анализаторов гематологических»

		Лейкоциты от 0,0 до 100·10 ³ ед/мкл	$U_{0.95} = 7 \%$ $\Pi\Gamma \pm 15 \%$	
91.3	Анализаторы глюкозы	от 0 до 50,0 моль/л	$U_{0.95} = 0,31$ моль/л ПГ \pm (625) % СКО \pm 2 %	МК-01.126.21 «Методика ка- либровки анали- заторов глюкозы»
91.4	Анализаторы мочи	массовая концентрация белка от 0,3 до 3,0 г/л	U _{0.95} = 10 % ΠΓ±20 %	МК-01.127.21 «Методика калибровки анализаторов мочи»
		молярная концентрация глюкозы от 5,5 до 56,0 ммоль/л	$U_{0.95} = 10 \%$ $\Pi\Gamma \pm 20 \%$	заторов мочи//
		счетная концентрация эритроцитов от 10 до 200 клет/мкл	U _{0.95} = 7 % ΠΓ±20 %	
		плотность от 1,005 до 1,040 г/мл	$U_{0.95} = 10 \%$ $\Pi\Gamma \pm 20 \%$	
		рН от 5,0 до 9,0 рН	U _{0.95} = 0,05 pH ПГ±0,2 ед.рН	
91.5	Анализаторы скринин- говые	от 0,1 до 1,0 Ед	$U_{0.95} = 10 \%$ $\Pi\Gamma \pm 0.03 E_{\text{Д}}$ $\Pi\Gamma \pm (1015) \%$	МК-01.128.21 «Методика калибровки анализаторов скрининговых»
91.6	Анализаторы электролитов крови	Натрий от 1до 300 ммоль/л Калий от 1,0 до 120 ммоль/л Хлор от 1 до 300 ммоль/л Кальций от 0,1 до 6,0 ммоль/л Литий от 0,1 до 6,0 ммоль/л рН от 6,0 до 8,0	$U_{0.95} = 1,16 \%$ СКО $(1,05) \%$ ПГ $\pm (0,34)$ ммоль/л $U_{0.95} = 0,012 \text{ pH}$ ПГ $\pm 0,05 \text{ pH}$	МК-01.129.21 «Методика калибровки анализаторов электролитов крови»
91.7	Анализаторы иммуно- химические	от 12 до 4600 мг/л от 0,2 до 200 ммоль/л	$U_{0.95} = 1,16 \%$ $\Pi\Gamma \pm 10 \%$ $\Pi\Gamma \pm 15 \%$	МК-01.130.21 «Методика калибровки анализаторов иммуно-

				химических»
91.8	Оксиметры пульсовые	канал SpO ₂ от 60 до 100 % канал ЧП от 15 до 320 мин ⁻¹	$U_{0.95} = 0.58 \%$ $\Pi\Gamma \pm (23) \%$ $U_{0.95} = 0.23 \text{ мин}^{-1}$ $\Pi\Gamma \pm (13) \text{ мин}^{-1}$	МК-01.131.21 «Методика калибровки оксиметров пульсовых»
91.9	Сфигмоманометры, измерители артериального давления и частоты пульса автоматические и полуавтоматические	от 0 до 300 мм рт. ст. от 30 до 220 мин ⁻¹	$U_{0.95} = 0.58$ mm pt. ct $\Pi\Gamma \pm (26)$ mm pt. ct. $U_{0.95} = 0.58$ % $\Pi\Gamma \pm 5$ %	МК-01.123.21 «Методика калибровки сфигмоманометров, измерителей артериального давления и частоты пульса»
91.10	Волюметры	от 0,2 до 1,5 л	$U_{0.95} = 2.3 \%$ $\Pi\Gamma \pm (1025) \%$	МК-01.132.21 «Методика ка- либровки волю- метров»
91.11	Тонометры внутриг- лазного давления че- рез веко цифровые	от 5 до 60 мм рт. ст.	$U_{0.95} = 0,058$ мм рт. ст. ПГ $\pm~10~\%$	МК-01.133.21 «Методика калибровки тонометров внутриглазного давления через веко цифровых»
91.12	Тонометры офтальмо- логические автомати- ческие бесконтактные	от 5 до 60 мм рт. ст.	$U_{0.95} = 0,058$ мм рт. ст. $\Pi\Gamma \pm 10~\%$ $\Pi\Gamma \pm 5$ мм рт. ст.	МК-01.134.21 «Методика калибровки тонометров офтальмологических автоматических бесконтактных»
91.13	Линейки скиаскопические, тип ЛСК-1	от – 19 до 19 дптр.	$U_{0.95} = 0.035$ дптр ПГ $\pm (0.0120.5)$ дптр.	МК-01.119.21 «Методика ка- либровки линеек скиаскопиче- ских»
91.14	Рефрактометры, рефрактокератометры, кератометры, офтальмометры	Сферическая вершинная рефракция от- 20,00 до + 20,00 дптр Цилиндрическая вершинная рефракция	$U_{0.95}=0,14$ дптр. $\Pi\Gamma\pm(0,250,50)$ дптр. $U_{0.95}=0,14$ дптр. $\Pi\Gamma\pm0,25$ дптр.	МК-01.135.21 «Методика ка- либровки рефрак- тометров, ре- фрактокерато- метров, керато- метров, офталь-

		от 0 до + 6,0 дптр		мометров»
		Радиус кривизны от 5 до 10 мм	$U_{0.95} = 0.058$ мм $\Pi\Gamma \pm 0.2$ мм	
91.15	Периметры настольные	Диапазон измерений шкалы дуги в обе стороны от нуля от 0 до 90°;	$U_{0.95}=2,3$ " $\Pi\Gamma\pm3^{\circ}$	МК-01.148.21 «Методика калибровки периметры настоль-
		диапазон измерений дисковой шкалы в обе стороны от нуля от 0 до 105°	$U_{0.95}=2,3$ " $\Pi\Gamma\pm2,5^{\circ}$	ные»
91.16	Анализаторы био- химические, фото- метры, спектрофо-	от 1 до 100 %	$U_{0.95} = 0.17 \%$ $\Pi\Gamma \pm (15) \%$	МК-01.41.20 «Методика ка- либровки экс-
	тометры медицин- ские, экспресс- анализаторы	от 0,000 до 2,500 Б	$U_{0.95} = 0,0070 \text{ F}$ $\Pi\Gamma \pm (0,040,10) \text{ F}$ CKO 0,001 F	пресс- анализаторыов параметров крови портативных
		от 3,3 до 102 ммоль/л	U _{0.95} =8,09 % ΠΓ ± 20 %	тиltiCare-in» МК-01.137.21 «Методика калибровки анализаторов биохимических» МК-01.138.21 «Методика калибровки фотометрыов медицинских» МК-01.139.21 «Методика калибровки спектрофотометров»
91.17	Анализаторы имму- ноферментные фо- тоэлектрические, фотометры микроп- ланшетные, анализа- торы иммунологи- ческие	от 0,000 до 3,500 Б	$U_{0.95}$ =0,0070 B $\Pi\Gamma \pm (0,0070,070)$ B $\Pi\Gamma \pm (2,55,0)$ %	МК-01.42.20 «Методика калибровки анализаторов иммуноферментных» МК-01.136.21 «Методика ка-
		от 1 до 70 нмоль/л	$U_{0.95} = 11,5 \%$ $\Pi\Gamma \pm 25 \%$	либровки фото- метров микроп- ланшетных»
91.18	Хроматографы меди- цинские	от 0 до 100 %	U _{0.95} = 0,0058 % CKO (16) %	МК-01.67.21 «Методика ка- либровки хрома- тографов газо- вых»

91.19	Анализаторы показателя гемостаза (коагулометры)	от 4 от 600 с	$U_{0.95} = 0.70 \text{ c}$ $\Pi\Gamma \pm (13) \text{ c}$	МК-01.140.21 «Методика калибровки анализаторов показателя гемостаза (коагулометров)»
91.20	Оправы пробные универсальные	от 24 до 40 мм	$U_{0.95}\!=0,\!017$ мм $\Pi\Gamma\pm0,\!5$ мм	МК-01.141.21 «Методика ка- либровки оправ пробных универ- сальных»
91.21	Линейки для измерения расстояния между центрами зрачков глаз пациента и подбора очковых оправ	от 0 до 160 мм	$U_{0.95} = 0,046 \ \text{мм}$ ПГ $\pm (0,10,3) \ \text{мм}$	МК-01.142.21 «Методика ка-либровки линеек для измерения расстояния между центрами зрачков глаз»
91.22	Ростомеры медицинские	от 0 до 2100 мм	$U_{0.95}=0,\!23$ мм $\Pi\Gamma\pm5$ мм	МК-01.143.21 «Методика ка- либровки росто- меров медицин- ских»
91.23	Спирометры, спирографы, спироанализаторы, пневмотахометры	Диапазон измерения объемных расходов от 0 до 18 дм ³ /с Диапазон измерений объема от 0 до 10 дм ³	$U_{0.95} = 0{,}023 \; { m дm}^3{/}{ m c}$ $\Pi\Gamma \pm 0{,}075 \; { m дm}^3{/}{ m c}$ $U_{0.95} = 1{,}16 \; \%$ $\Pi\Gamma \pm (3 \dots 8) \; \%$	МК-01.144.21 «Методика калибровки спирометров, спирографов, спироанализаторов, пневмотахометров»
91.24	Анализаторы ПЦР, системы для проведения ПЦР в режиме реального времени, приборы для проведения полимеразной цепной реакции в режиме реального времени, устройства компьютеризированные четырехканальные для обнаружения в режиме реального времени флуоресцентной детекцией специфической последовательно-	от 0 до 3 Б	$U_{0.95} = 12 \%$ CKO 5 % $U_{0.95} = 0.035 \text{ B}$ $\Pi\Gamma \pm 0.01 \text{ B}$ $\Pi\Gamma \pm (22.5) \%$	МК-01.145.21 «Методика калибровки анализаторов ПЦР»

				1
	сти нуклеиновых кис-			
	лот методом полиме-			
	разной цепной реак-			
	ции, фотометры-			
	флуориметры микроп-			
	ланшетные			
91.25	Ацидогастрометры,	от 1,1 до 9,2 рН	$U_{0.95} = 0.012 \text{ pH}$	MK-01.146.21
	ацидогастромониторы		$\Pi\Gamma \pm 0.5 \text{ pH}$	«Методика ка-
				либровки ацидо-
				гастрометров,
				ацидогастромо-
				ниторов»
91.26	Осмометры криоско-	от 20 до 199 ммоль/кг	$U_{0.95} = 0,23 \%$	MK-01.147.21
	пические		$CKO \pm 5$ ммоль/кг	«Методика ка-
				либровки осмо-
		от 200	$U_{0.95} = 0,23 \%$	метров криоско-
		до 2000 ммоль/кг	CKO ± 2 %	пических»
		от 0 до 500 ммоль/кг	$U_{0.95} = 0.23 \%$	
		5 00 2 000	$\Pi\Gamma \pm 3$ ммоль/кг	
		от 500 до 2000	$U_{0.95} = 0.23 \%$	
		ммоль/кг	$\Pi\Gamma$ ±0,5 %	
		2 2000 /	11 0.22 0/	
		от 2 до 2000 ммоль/кг	$U_{0.95} = 0.23 \%$	
		H ₂ O	$\Pi\Gamma \pm 2 \%$	
		от 0 до 200 ммоль/кг	$U_{0.95} = 0.23 \%$	
		от о до 200 ммоль/кг	$CKO \pm 1$ ммоль/кг	
			CICO ± 1 MMOJIB/RI	
		от 200 до 1000	$U_{0.95} = 0.23 \%$	
		ммоль/кг	$CKO \pm 0.5 \%$	
		MANAGORE / ALL	0,0 / 0	
		от 0 до 400	$U_{0.95} = 0.23 \%$	
		мОсмоль/кг	СКО ± 2 мОсмоль/кг	
		от 400 до 2000	$U_{0.95} = 0.23 \%$	
		мОсмоль/кг	CKO $\pm 0.5\%$	
91.27	Установки для повер-	от 0 до 400 мм рт.ст.	$U_{0.95} = 0,023 \%$	MK-01.122.21
	ки каналов измерения		$\Pi\Gamma\pm0$,5 мм рт.ст.	«Методика ка-
	давления и частоты	от 30 до 200 мин-1	$\Pi\Gamma\pm0.5~\%$	либровки уста-
	пульса			новки для повер-
				ки каналов изме-
				рения давления и
				частоты пульса»
01.20	<u> </u>	0.1.025	II 0.000 F	MIC 01 101 01
91.28	Анализаторы билиру-	от 0,1 до 0,3 Б	$U_{0.95} = 0.023 \text{ B}$	MK-01.121.21
	бина и гипербилиру-	om 0.2 == 1.0 F	$\Pi\Gamma \pm 0.03 \text{ B}$	«Методика ка-
	бинемии	от 0,3 до 1,0 Б	$U_{0.95} = 0.023 \text{ B}$	либровки анали-
			$\Pi\Gamma \pm (1015) \%$	заторов билиру- бина»
				оина»

91.29	Дозиметры рентгеновского излучения клинические	от 1 до 10 ⁴ сГр [.] см ²	$U_{0.95}=8,1~\%$ ПГ \pm (15+35/P) %, где P — безразмерная величина, численно равная измеренному значению произведения дозы на площадь	МК-01.120.21 «Методика калибровки дозиметров рентгеновского излучения»
-	ЕНТЫ ИЗМЕРИТЕЛЬ			
92			ентов измерительных си	
92.1	Логометры	от -200 до 650 °C	U _{0.95} = 0,023 % KT 1; 1,5	МК-01.101.21 «Методика калибровки логометров»
92.2	Мосты уравновешен- ные автоматические	от -200 до 650 °C	U _{0.95} = 0,023 % KT (0,251)	МК-01.102.21 «Методика калибровки мостов уравновешенных автоматических»
92.3	Милливольтметры	от -50 до 1800 °C	U _{0.95} = 0,058 % KT 1; 1,5	МК-01.103.21 «Методика калибровки милливольтметров»
92.4	Потенциометры автоматические	от 0 до 2500 °C	U _{0.95} = 0,058 % KT (0,251)	МК-01.104.21 «Методика калибровки потенциометров автоматических»
92.5	Измерители- регуляторы темпера- туры	от -200 до 2500 °C	$U_{0.95} = 0,00058 \%$ $\Pi\Gamma \pm (0,250,5) \%$	МК-01.10.19 «Методика ка- либровки вторич- ных измеритель- ных преобразова- телей»
93	Измерительные каналы информационно-измерительных систем (ИК ИИС АСУТП), контроллеры	от 0 до 20 мА разрешение 0,1 мкА от 4 до 20 мА от 0 до 5 В разрешение 10 мкВ от 0 до 10 В разрешение 10 мкВ от 0 до 75 мВ разрешение 0,1 мкВ от 0 до 100 мВ	$U_{0.95} = 0.013 \%$ $\Pi\Gamma \pm (0,2 \dots 1) \%$ $U_{0.95} = 0.013 \%$ $\Pi\Gamma \pm (0,2 \dots 1) \%$ $U_{0.95} = 0.0069 \%$ $\Pi\Gamma \pm (0,1 \dots 1) \%$ $U_{0.95} = 0.0064 \%$ $\Pi\Gamma \pm (0,1 \dots 1) \%$ $U_{0.95} = 0.012 \%$ $\Pi\Gamma \pm (0,1 \dots 1) \%$ $U_{0.95} = 0.010 \%$	МК-08.104.20 «Измерительные каналы информационно- измерительных систем, контроллеры. Методика калибровки»

		разрешение 0,1 мкВ	$\Pi\Gamma \pm (0,1 \ldots 1) \%$	
		от 0 до 100 В разрешение 100 мкВ	$U_{0.95} = 0,0069 \%$ $\Pi\Gamma \pm (0,1 \dots 1) \%$	
		от 1 · 10 ⁻³ до 1 · 10 ⁵ Ом	$U_{0.95} = 0{,}018~\% \ \Pi\Gamma \pm (0{,}1~~1)~\%$	
		от 0 до $1 \cdot 10^5$ имп.	$U_{0.95}=1$ имп. ПГ $\pm(1\ldots3)$ имп.	
		от 0,1 мкс до 10 с	$U_{0.95} = 1,2 \cdot 10^{-6}$ ПГ ± (1 10) мс	
		от 0,1 до 100 Гц	$U_{0.95} = 1,2 \cdot 10^{-7}$ $\Pi\Gamma \pm (1 \cdot 10^{-3} \dots 5 \cdot 10^{-3})$	
		300013, г. Тула, ул. Вол		
	ЕРЕНИЯ ХАРАКТЕРИ		щих излучений и я	ДЕРНЫХ КОН-
CTAI	•		COMMONTAL DAMANDOM NO	Y HOLL I WOTOWO
94	Средства измерении эк энергии гамма-излучен		ощности экспозиционно	и дозы и потока
94.1	Дозиметрические при-	0,01 мР 10 Р	$U_{0.95} = 12 \%$	MK-08.118.20
	боры для измерения экспозиционной и эк-	0,1 мкЗв 1 Зв	$\Pi\Gamma \pm (1030)\%$	«Дозиметриче- ские приборы для
	вивалентной дозы, мощности экспозици-	$(10^{-5}10)$ Р/ч $(10^{-7}10^{-1})$ Зв/ч	$U_{0.95} = 4.6 \%$ $\Pi\Gamma \pm (1030)\%$	измерения экспо- зиционной и эк-
	онной и эквивалент- ной дозы гамма-	(1010) 31/1	111 ± (1030) /6	вивалентной до-
	излучений			экспозиционной и эквивалентной
				дозы гамма— излучений. Мето- дика калибровки»
94.2	Радиометры для изме-	$(5\cdot10^{-1}2\cdot10^4)$ c ⁻¹ m ⁻²	U _{0.95} = 25 %	MK-08.119.20
	рения потока и плот-	$(3.10 \dots 2.10) \ C \ M$	$\Pi\Gamma \pm (1050) \%$	«Радиометры для
	ности потока бета-		,	измерения потока
	частиц			и плотности по-
				тока бета-частиц.
				Методика калиб-
	200011	~ ~ ~		ровки»
TION		г. Рязань, ул. Старообр		HEDIH IV 100H
ИЗМ. CTAl		Стик ионизирую	щих излучений и я	дегных кон-
95		спозиционной дозы. м	ощности экспозиционно	й дозы и потока
	энергии гамма-излучен	· · · · · · · · · · · · · · · · · · ·		
95.1	Дозиметрические	0,01 мР 10 Р	$U_{0.95} = 12 \%$	MK-08.118.20
	приборы для измере-	0,1 мк3в 1 Зв	$\Pi\Gamma \pm (1030)\%$	«Дозиметриче-
	ния экспозиционной и	(405 40) = (ские приборы для
	эквивалентной дозы,	$(10^{-5}10)$ P/y	$U_{0.95} = 4,6 \%$	измерения экспо-
	мощности экспозици-	$(10^{-7}10^{-1})$ 3 _B / _Ч	$\Pi\Gamma \pm (1030)\%$	зиционной и эк-
	онной и эквивалент-			вивалентной до-
	ной дозы гамма—			зы, мощности
	излучений			экспозиционной и

95.2	Радиометры для измерения потока и плотности потока бетачастиц	(5·10 ⁻¹ 2·10 ⁴) с ⁻¹ м ⁻²	U _{0.95} = 25 % ΠΓ ± (1050) %	эквивалентной дозы гамма— излучений. Методика калибровки» МК-08.119.20 «Радиометры для измерения потока и плотности потока бета-частиц. Методика калибровки»
------	---	---	---	--

¹Символ «*» рядом с порядковым номером обозначает, что калибровка может выполняться только вне постоянных мест осуществления деятельности (на местах осуществления временных работ).

²В Примечании указаны реализуемые методы (методики) калибровки. Если обозначение документа, устанавливающего метод (методику) калибровки, датировано, используется только эта конкретная методика. Если обозначение документа, устанавливающего метод (методику) калибровки, не датировано, используется последняя редакция указанной методики (включая любые изменения).

³Расширенная неопределенность измерений (U) выражена в соответствии с ILAC-P14 и EA-4/02, является частью СМС и представляет собой наименьшую расширенную неопределенность, достижимую для наилучшего доступного объекта калибровки. Вероятность охвата соответствует приблизительно 95 %, а коэффициент охвата k = 2, если не указано иное. Значения неопределенности без указания единиц величин являются относительными по отношению к измеренному значению величины, если не указано иное.